Violympic toán 9

H24

Cho ba số thực a,b,c sao cho \(1\le a\le2\),\(1\le b\le2\),\(1\le c\le2\)

Chứng minh \(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}+\dfrac{a}{c}+\dfrac{c}{b}+\dfrac{b}{a}\le7\)

H24
16 tháng 12 2018 lúc 21:00

Không mất tính tổng quát, giả sử \(2\ge a\ge b\ge c\ge1\)

Khi đó dễ thấy dấu = sẽ đạt được tại biên, tức a=2, c=1 nên ta sẽ dồn các biến ra biên

Ta có: \(\left(\dfrac{a}{b}-1\right)\left(\dfrac{b}{c}-1\right)\ge0\Leftrightarrow\dfrac{a}{b}+\dfrac{b}{c}\le\dfrac{a}{c}+1\)

\(\left(\dfrac{b}{a}-1\right)\left(\dfrac{c}{b}-1\right)\ge0\Leftrightarrow\dfrac{b}{a}+\dfrac{c}{b}\le\dfrac{c}{a}+1\)

Do đó \(VT\le2\left(\dfrac{a}{c}+\dfrac{c}{a}\right)+2\) nên chỉ cần chứng minh \(\dfrac{a}{c}+\dfrac{c}{a}\le\dfrac{5}{2}\)(*) hay \(\dfrac{\left(a-2c\right)\left(2a-c\right)}{2ac}\le0\) ( luôn đúng do \(c\le a\le2c\) )

Vậy ta có đpcm. Dấu = xảy ra khi a=2, c=1, b=1 hoặc a=2, c=1, b=2 và các hoán vị tương ứng.

Bình luận (0)

Các câu hỏi tương tự
NN
Xem chi tiết
NH
Xem chi tiết
TZ
Xem chi tiết
NT
Xem chi tiết
H24
Xem chi tiết
PP
Xem chi tiết
TT
Xem chi tiết
H24
Xem chi tiết
HC
Xem chi tiết