Những câu hỏi liên quan
TH
Xem chi tiết
DX
16 tháng 9 2018 lúc 10:16

a) \(x^2+8x+17=\left(x^2+8x+16\right)+1=\left(x+4\right)^2+1\ge1>0\)

\(x^2-x+1=\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

Bình luận (1)
TH
16 tháng 9 2018 lúc 9:58

giải giúp mik với

Bình luận (0)
WH
15 tháng 11 2018 lúc 6:48

a) \(x^2+8x+17>0\) với mọi x

Ta có: \(x^2+8x+17=x^2+8x+16+1\)

\(=\left(x+4\right)^2+1>0\) với mọi x

Vậy \(x^2+8x+17>0\) với mọi x

b) \(x^2-x+1\ge\dfrac{3}{4}\) với mọi x

Ta có \(x^2-x+1=x^2-2.\dfrac{1}{2}x+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\) với mọi x

Vậy \(x^2-x+1\ge\dfrac{3}{4}\) với mọi x

Bình luận (0)
NH
Xem chi tiết
KS
Xem chi tiết
TX
Xem chi tiết
TX
2 tháng 10 2019 lúc 20:21

Ai nhanh và đúng thì mình sẽ tick và add friends nhé. Thanks. Please help me!!!

Bình luận (0)
LH
Xem chi tiết
TT
Xem chi tiết
HN
Xem chi tiết
DS
Xem chi tiết
TH
Xem chi tiết
NT
5 tháng 7 2022 lúc 13:18

a: 3(x-1)-2(x+1)=-3

=>3x-3-2x-2=-3

=>x-5=-3

=>x=2

Thay x=2 vào pt(1), ta được:

\(2m^2+m-6=0\)

=>2m2+4m-3m-6=0

=>(m+2)(2m-3)=0

=>m=-2 hoặc m=3/2

c: \(x^2+x+1=x^2+x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)

Bình luận (0)