Những câu hỏi liên quan
MN
Xem chi tiết
KS
29 tháng 3 2022 lúc 10:57

x=2-2*căn bậc hai(3), x=2

 
Bình luận (0)
HK
Xem chi tiết

MÌNH KHÔNG BIẾT ^_^

Bình luận (0)
TP
12 tháng 2 2019 lúc 21:46

\(\left(x^2+x\right)^2+4\left(x^2+x\right)=12\)

Đặt \(a=x^2+x\)

\(\Leftrightarrow a^2+4a=12\)

\(\Leftrightarrow a^2+4a-12=0\)

\(\Leftrightarrow a^2+6a-2a-12=0\)

\(\Leftrightarrow a\left(a+6\right)-2\left(a+6\right)=0\)

\(\Leftrightarrow\left(a+6\right)\left(a-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=-6\\a=2\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x^2+x=-6\\x^2+x=2\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x^2+2\cdot x\cdot\frac{1}{2}+\frac{1}{4}+\frac{23}{4}=0\\x^2+2x-x-2=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}\left(x+\frac{1}{2}\right)^2=\frac{-23}{4}\left(loai\right)\\\left(x+2\right)\left(x-1\right)=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=-2\\x=1\end{cases}}\)

Vậy....

Bình luận (0)
TP
12 tháng 2 2019 lúc 21:51

\(\left(x^2+6x+10\right)^2+\left(x+3\right)\left(3x^2+20x+36\right)=0\)

( rút gọn phá ngoặc tất cả )

\(\Leftrightarrow x^4+15x^3+85x^2+216x+208=0\)

\(\Leftrightarrow x^4+4x^3+11x^3+44x^2+41x^2+164x+52x+208=0\)

\(\Leftrightarrow x^3\left(x+4\right)+11x^2\left(x+4\right)+41x\left(x+4\right)+52\left(x+4\right)=0\)

\(\Leftrightarrow\left(x+4\right)\left(x^3+11x^2+41x+52\right)=0\)

\(\Leftrightarrow\left(x+4\right)\left(x^3+4x^2+7x^2+28x+13x+52\right)=0\)

\(\Leftrightarrow\left(x+4\right)\left[x^2\left(x+4\right)+7x\left(x+4\right)+13\left(x+4\right)\right]=0\)

\(\Leftrightarrow\left(x+4\right)\left(x+4\right)\left(x^2+7x+13\right)=0\)

\(\Leftrightarrow\left(x+4\right)^2\left(x^2+2\cdot x\cdot\frac{7}{2}+\frac{49}{4}+\frac{3}{4}\right)=0\)

\(\Leftrightarrow\left(x+4\right)^2\left[\left(x+\frac{7}{2}\right)^2+\frac{3}{4}\right]=0\)

\(\Leftrightarrow x+4=0\)

\(\Leftrightarrow x=-4\)

Vậy....

Bình luận (0)
HH
Xem chi tiết
LK
14 tháng 5 2020 lúc 22:03

\(\left(x+3\right)^2\left(x^2+6x+1\right)=9\)

\(\Leftrightarrow\left(x^2+6x+9\right)\left(x^2+6x+1\right)=9\)

Đặt: \(x^2+6x+5=t\)thì:

\(\left(1\right)\Leftrightarrow\left(t-4\right)\left(t+4\right)=9\)

\(\Leftrightarrow t^2-25=0\)

\(\Leftrightarrow\left(t-5\right)\left(t+5\right)=0\)

\(\Leftrightarrow\left(x^2+6x\right)\left(x^2+6x+10\right)=0\)

\(\Leftrightarrow x\left(x+6\right)=0\left(x^2+6x+10=\left(x+3\right)^2+1>0\right)\)

.... bạn tự giả tiếp

Chúc bạn hc tốt :D

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
CA
Xem chi tiết
PH
1 tháng 3 2019 lúc 21:27

Đặt: \(x^2-6x+9=t\left(t\ge0\right)\)

Khi đó: \(\left(x^2-6x+9\right)^2-15\left(x^2-6x+10\right)=1\)

\(\Leftrightarrow t^2-15\left(t+1\right)=1\Leftrightarrow t^2-15t-15=1\)

\(\Leftrightarrow t^2-15t-16=0\Leftrightarrow\left(t-16\right)\left(t+1\right)=0\Leftrightarrow t=16\left(t\ge0\right)\) 

\(\Leftrightarrow x^2-6x+9=16\Leftrightarrow\left(x-3\right)^2=16\)

\(\Leftrightarrow\orbr{\begin{cases}x-3=4\\x-3=-4\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=7\\x=-1\end{cases}}\)

Tập nghiệm của pt: \(S=\left\{7;-1\right\}\)

Bình luận (0)
NN
28 tháng 4 2020 lúc 9:44

Đặt \(x^2-6x+9=t\)

\(\Rightarrow\)Phương trình ban đầu trở thành: \(t^2-15\left(t+1\right)=1\)

\(\Leftrightarrow t^2-15t-15=1\)\(\Leftrightarrow t^2-15t-16=0\)

\(\Leftrightarrow\left(t^2+t\right)-\left(16t+16\right)=0\)\(\Leftrightarrow t\left(t+1\right)-16\left(t+1\right)=0\)

\(\Leftrightarrow\left(t+1\right)\left(t-16\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}t+1=0\\t-16=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}t=-1\\t=16\end{cases}}\)

Ta thấy: \(x^2-6x+9=\left(x-3\right)^2\ge0\forall x\)

\(\Rightarrow t\ge0\)\(\Rightarrow t=16\)\(\Rightarrow x^2-6x+9=16\)

\(\Leftrightarrow x^2-6x-7=0\)\(\Leftrightarrow\left(x^2+x\right)-\left(7x+7\right)=0\)

\(\Leftrightarrow x\left(x+1\right)-7\left(x+1\right)=0\)\(\Leftrightarrow\left(x+1\right)\left(x-7\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x-7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=7\end{cases}}\)

Vậy tập nghiệm của phương trình là: \(S=\left\{-1;7\right\}\)

Bình luận (0)
 Khách vãng lai đã xóa
KQ
28 tháng 4 2020 lúc 15:42

dau lon dau buoi

Bình luận (0)
 Khách vãng lai đã xóa
BT
Xem chi tiết
NT
25 tháng 1 2021 lúc 22:17

a) Ta có: \(2x^3+5x^2-3x=0\)

\(\Leftrightarrow x\left(2x^2+5x-3\right)=0\)

\(\Leftrightarrow x\left(2x^2+6x-x-3\right)=0\)

\(\Leftrightarrow x\left[2x\left(x+3\right)-\left(x+3\right)\right]=0\)

\(\Leftrightarrow x\left(x+3\right)\left(2x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+3=0\\2x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-3\\2x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-3\\x=\dfrac{1}{2}\end{matrix}\right.\)

Vậy: \(S=\left\{0;-3;\dfrac{1}{2}\right\}\)

b) Ta có: \(2x^3+6x^2=x^2+3x\)

\(\Leftrightarrow2x^2\left(x+3\right)=x\left(x+3\right)\)

\(\Leftrightarrow2x^2\left(x+3\right)-x\left(x+3\right)=0\)

\(\Leftrightarrow x\left(x+3\right)\left(2x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+3=0\\2x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-3\\2x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-3\\x=\dfrac{1}{2}\end{matrix}\right.\)

Vậy: \(S=\left\{0;-3;\dfrac{1}{2}\right\}\)

c) Ta có: \(x^2+\left(x+2\right)\left(11x-7\right)=4\)

\(\Leftrightarrow x^2+11x^2-7x+22x-14-4=0\)

\(\Leftrightarrow12x^2+15x-18=0\)

\(\Leftrightarrow12x^2+24x-9x-18=0\)

\(\Leftrightarrow12x\left(x+2\right)-9\left(x+2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(12x-9\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\12x-9=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\12x=9\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{3}{4}\end{matrix}\right.\)

Vậy: \(S=\left\{-2;\dfrac{3}{4}\right\}\)

Bình luận (0)
KD
25 tháng 1 2021 lúc 22:10

Trong đó có nhiều phương trình kiến thức cơ bản mà nhỉ? Ít nâng cao, bạn lọc ra câu nào k làm đc thôi chứ!

Bình luận (0)
HA
Xem chi tiết
H24
24 tháng 2 2021 lúc 19:49

`a,(x+3)(x^2+2021)=0`

`x^2+2021>=2021>0`

`=>x+3=0`

`=>x=-3`

`2,x(x-3)+3(x-3)=0`

`=>(x-3)(x+3)=0`

`=>x=+-3`

`b,x^2-9+(x+3)(3-2x)=0`

`=>(x-3)(x+3)+(x+3)(3-2x)=0`

`=>(x+3)(-x)=0`

`=>` $\left[ \begin{array}{l}x=0\\x=-3\end{array} \right.$

`d,3x^2+3x=0`

`=>3x(x+1)=0`

`=>` $\left[ \begin{array}{l}x=0\\x=-1\end{array} \right.$

`e,x^2-4x+4=4`

`=>x^2-4x=0`

`=>x(x-4)=0`

`=>` $\left[ \begin{array}{l}x=0\\x=4\end{array} \right.$

Bình luận (0)
ND
24 tháng 2 2021 lúc 19:13

1) a) \(\left(x+3\right).\left(x^2+2021\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x+3=0\\x^2+2021=0\end{matrix}\right.\\\left[{}\begin{matrix}x=-3\left(nhận\right)\\x^2=-2021\left(loại\right)\end{matrix}\right. \)

=> S={-3}

 

Bình luận (0)
NT
24 tháng 2 2021 lúc 20:07

Bài 1: 

a) Ta có: \(\left(x+3\right)\left(x^2+2021\right)=0\)

mà \(x^2+2021>0\forall x\)

nên x+3=0

hay x=-3

Vậy: S={-3}

Bài 2: 

b) Ta có: \(x\left(x-3\right)+3\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)

Vậy: S={3;-3}

Bình luận (0)
H24
Xem chi tiết
NT
7 tháng 3 2022 lúc 0:28

1: \(\Leftrightarrow6\left(3x-1\right)+3\left(6x-2\right)=4\left(1-3x\right)\)

=>18x-6+18x-6=4-12x

=>36x-12=4-12x

=>48x=16

hay x=1/3

2: \(\Leftrightarrow\left(2x-1\right)\left(2x-1+x-3\right)=0\)

=>(2x-1)(3x-4)=0

=>x=1/2 hoặc x=4/3

Bình luận (0)
H24
Xem chi tiết
H24
24 tháng 5 2023 lúc 14:39

a. Vì \(0< 0,1< 1\) nên bất phương trình đã cho 

\(\Leftrightarrow0< x^2+x-2< x+3\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+x-2>0\\x^2-5< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x< -2\\x>1\end{matrix}\right.\\-\sqrt{5}< x< \sqrt{5}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-\sqrt{5}< x< -2\\1< x< \sqrt{5}\end{matrix}\right.\)

Vậy tập nghiệm của bất phương trình là \(S=\left\{-\sqrt{5};-2\right\}\) và \(\left\{1;\sqrt{5}\right\}\)

b. Điều kiện \(\left\{{}\begin{matrix}2-x>0\\x^2-6x+5>0\end{matrix}\right.\)

Ta có:

 \(log_{\dfrac{1}{3}}\left(x^2-6x+5\right)+2log^3\left(2-x\right)\ge0\)

\(\Leftrightarrow log_{\dfrac{1}{3}}\left(x^2-6x+5\right)\ge log_{\dfrac{1}{3}}\left(2-x\right)^2\)

\(\Leftrightarrow x^2-6x+5\le\left(2-x\right)^2\)

\(\Leftrightarrow2x-1\ge0\)

Bất phương trình tương đương với:

\(\left\{{}\begin{matrix}x^2-6x+5>0\\2-x>0\\2x-1\ge0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x< 1\\x>5\end{matrix}\right.\\x< 2\\x\ge\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\dfrac{1}{2}\le x< 1\)

Vậy tập nghiệm của bất phương trình là: \(\left(\dfrac{1}{2};1\right)\)

Bình luận (0)