Tam giácABC cân tại A,phân giác BD.MB=MC,BD=2AM.Tính các góc tam giác ABC
Gấppppp 4h chiều CN này
Bài 1:
a) Cho tam giác ABC có các đường cao BD và CE bằng nhau. Chứng minh rằng tam giác đó là tam giác cân.
b) Cho tam giácABC cân tại A, đường cao CH cắt tia phân giác của góc A tại D. Chứng minh rằng BD vuông góc với AC.
a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có
BD=CE
góc ABD=góc ACE
=>ΔADB=ΔAEC
=>AB=AC
=>ΔABC cân tại A
b: ΔABC cân tại A
mà AD là đường phân giác
nên AD vuông góc BC
Xét ΔABC có
AD,CH là đường cao
AD cắt CH tại D
=>D là trực tâm
=>BD vuông góc AC
cho tam giác abc cân tại a góc a nhọn CD là đường phân giác góc ACB (d thuộc ab). qua d kẻ đường vuông góc CD, đường này cắt CN tại e. c/m : bd=1/2ec
cho tam giác abc có góc a nhọn . vẽ ra phía ngoài tam giác đó các tam giác abm,acn vuông cân tại a. bn và mc cắt nhau tại d
cm tam giác amb = abn
bn vuông góc cm
mb = 3, bc= 2, cn=4 tính mn
cm da là tia phân giác mdn
Câu 1 sai đề 100% nên check lại đi bạn nhé!
phải là cm\(\Delta AMC=\Delta ABN\)
a)xét 2 tam giác AMC và ABN có:
AM =AB (tam giác AMB vuông cân)
góc MAC=góc BAN(vì cùng = 90độ+goác BAC)
AN =AC(ANC vuông cân)
=> 2 tam giác AMC=ABN(c.g.c)
=> 2 góc ANB =ACM ( 2 góc tương ứng)
b)gọi O là giao điểm của BN và AC
xét tam giác AON vuông ở A
=> góc ANO +góc AON =90độ
góc DOC =góc AON (đối đỉnh)
mà góc ANB=góc ACM (theo a)
=> góc DOC+góc DCO =90độ
=> góc ODC =90độ
hay BN vuông góc với CM
cho tam giác abc có góc a nhọn .vẽ ra phía ngoài tam giác đó các tam giác abm,acn vuông cân tại a.bn và mc cắt nhau tại d.
a, chứng minh tam giác amc=tam giác abn
b, chứng minh bn vuông góc cm
cho mb= 3cm,bc=2cm,cn=4cm.tính mn
d, chứng minh rằng da là phân giác của góc mdN
a) xét tg AMC và tg ABN có
MA=BA(gt)
CA=AN(gt)
ˆMAC=ˆBAN(doˆMAB+ˆBAC=ˆNAC+ˆBAC)MAC^=BAN^(doMAB^+BAC^=NAC^+BAC^)
=>(kết luận)...
b)gọi I là giao điểm của MC và BN
gọi giao điểm của BA và MI là F
vì ΔAMC=ΔABNΔAMC=ΔABNnên
ˆFMA=ˆFBIFMA^=FBI^
mà ˆFMA+ˆFMB=45OFMA^+FMB^=45O
=>ˆFBI+ˆIMB=45OFBI^+IMB^=45O
Xét ΔIMBΔIMBcó góc ˆIMB+ˆMBI+ˆBIMIMB^+MBI^+BIM^= 180O
Mà ˆIMB+ˆMBIIMB^+MBI^=900
=>...
a) Thấy
Từ đây ta xét t/g MAC và BAN ta có:
=>MA=BA; AC=AN
=>
=>ΔMAC=ΔBAN(c−g−c)⇒MC=BNΔMAC=ΔBAN(c−g−c)⇒MC=BN
đpcm.
b)
Ta gọi giao điểm của MC và BN là 1 điểm D
Ta có: ˆDBA=ˆDMA(ΔMAC=ΔBAN(c−g−c))DBA^=DMA^(ΔMAC=ΔBAN(c−g−c))
Nên ˆMBD+ˆBMD=ˆMBA+ˆDBA+ˆBMD=ˆMBA+ˆDMA+ˆBMD=ˆMBAMBD^+BMD^=MBA^+DBA^+BMD^=MBA^+DMA^+BMD^=MBA^
+ˆBMA=90o+BMA^=90o
Xét t/g MBD có ˆMBD+ˆBMD=90o⇒ˆBMD=90oMBD^+BMD^=90o⇒BMD^=90o
⇒BN⊥MC⇒BN⊥MC
Bổ sung D giao điểm nhé vào hình nha bn.
c) Ta giả sử như ABC đều cạnh 4cm (theo đề bài) thì sẽ có: AM=AC=AB=NA=4cm
Áp dụng định lý pi-ta-go ta có:
Cho t/g MAB và NAC thì MB=NC=4√2(cm)42(cm)
Khi ABC đều cạnh 4cm thì AMC = NAB là t/g vuông cân có góc ở đỉnh : 90o+60o=150o
=>ˆAMC=ˆACMAMC^=ACM^= (180o-150o):2=15o
Thì
Lại có
Vì t/gMAN cân tại A nên = (180o-120o) : 2 =30o
=>
=>
=> BC//MN ( so le trong)
đpcm.
Cho tam giác ABC có góc A nhọn. Vẽ ra phía ngoài các tam giác ABM và ACN vuông cân tại A. BN cắt MC tại D. a) CM : Δ AMC = Δ ABN b) CM: BN ⊥⊥ CM c) Cho MB = 3cm; BC = 2cm; CN = 4cm. Tính MN. d) Chứng minh DA la tia phân giác góc MDN
a: Xét ΔABN và ΔAMC có
AB=AM
góc BAN=góc MAC
AN=AC
Do đó: ΔABN=ΔAMC
b: Gọi giao của ME với AB là D, NE với AC là F
góc AMD+góc MDA=90 độ
=>góc AMD+góc BDE=90 độ
=>góc DBE+góc BDE=90 độ
=>góc BED=90 độ
=>BN vuông góc với CM
c: BC^2+MN^2=BE^2+CE^2+ME^2+NE^2
=CN^2+BM^2
=>MN^2=7+5-3=9cm
=>MN=3cm
cho tam giác ABC cân tại A, lấy điểm H là trung điểm của đoạn BC.
a) CM tam giác ABH = tam giác ACH.
b) tia phân giác góc ABC cắt đoạn AH tại M CM :góc ABM = góc ACM và tam giác MBC cân
c)đường thằng đi qua A và song song với BC cắt tia BM tại N.CM :AB=AN .
d)CM MC vuông góc với CN
a/ Xét T/g ABH và T/g ACH ta có :
+ AB = AC ( T/g ABC cân tại A )
+ BH = CH ( H là trung điểm BC )
+ Góc ABH = ACH ( T/g ABC cân tại A )
=> T/g ABH = T/g ACH (C.g.c)
b/Xét T/g ABM và T/g ACM ta có
+ Ab = Ac ( T/g ABC cân tại A )
+ AM chung
+ BAM = CAM ( T/g ABH = T/g ACH )
=> T/g ABM = T/g ACM (C.g.c)
- Ta có :
BM = CM ( T/g ABM = T/g ACM)
=> T/g MBC cân tại M
cho tam giác ABC cân tại A, lấy điểm H là trung điểm của đoạn BC.
a) CM tam giác ABH = tam giác ACH.
b) tia phân giác góc ABC cắt đoạn AH tại M CM :góc ABM = góc ACM và tam giác MBC cân
c)đường thằng đi qua A và song song với BC cắt tia BM tại N.CM :AB=AN .
d)CM MC vuông góc với CN
a) Xét \(\Delta ABH\)và \(\Delta ACH\)có:
\(AB=AC\)(gt)
\(\widehat{ABH}=\widehat{ACH}\)(gt)
\(BH=CH\)(gt)
suy ra: \(\Delta ABH=\Delta ACH\)(c.g.c)
cho tam giác ABC cân tại A đường phân giác BM từ M vẽ MD vuuong góc BM cắt BC tại D . chứng minh BD =2 MC
Cho tam giác ABC cân tại A có góc ABC = 36 độ.
a) Tính số đo các góc trong tam giác ABC.
b) Tia phân giác của góc ABC cắt AC tại D.Gọi E là hình chiếu của B lên CA, F là hình chiều của A lên BD.Chứng minh tam giác ABE = tam giác ABF.
c) Chứng minh: BD < EC.
Mong mn giúp mk làm bài này, có hình thì very very very good!
a) Vì tam giác ABC cân tại A ==> \(\widehat{ABC}\)=\(\widehat{ACB}\)= 36 độ
Xét tam giác ABC có: \(\widehat{ABC}\)+\(\widehat{ACB}\)+\(\widehat{BAC}\)= 180 độ (tổng 3 góc của 1 tam giác)
\(\widehat{BAC}\)= 180 độ - (\(\widehat{ABC}\)+\(\widehat{ACB}\))
\(\widehat{BAC}\)= 180 độ - ( 36 độ + 36 độ)
\(\widehat{BAC}\)= 108 độ
b, Xét tam giác ABE và tam giác ABF có:
\(\widehat{AEB}\)=\(\widehat{AFB}\)= 90 độ
AB là cạnh chung
\(\widehat{ABE}\)chung
Vậy tam giác ABE = tam giác ABF (ch.gn)