Những câu hỏi liên quan
TT
Xem chi tiết
VT
Xem chi tiết
NT
28 tháng 4 2023 lúc 22:49

a: 3x-2=2x-3

=>x=-1

b: 2x+3=5x+9

=>-3x=6

=>x=-2

c: 5-2x=7

=>2x=-2

=>x=-2

d: 10x+3-5x=4x+12

=>5x+3=4x+12

=>x=9

e: 11x+42-2x=100-9x-22

=>9x+42=78-9x

=>18x=36

=>x=2

f: 2x-(3-5x)=4(x+3)

=>2x-3+5x=4x+12

=>7x-3=4x+12

=>3x=15

=>x=5

Bình luận (0)
LL
Xem chi tiết
H24
15 tháng 5 2018 lúc 17:48

cvfbhm,

Bình luận (0)
PE
23 tháng 3 2021 lúc 14:30

Xin lỗi em ko biết làm , em vẫn chưa lên lớp 9

Bình luận (0)
 Khách vãng lai đã xóa
LL
23 tháng 3 2021 lúc 18:27

1)\(\left(\frac{1}{a-\sqrt{a}}+\frac{1}{\sqrt{a}-1}\right):\frac{\sqrt{a}+1}{a-2\sqrt{a}+1}\)

\(=\left(\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}+\frac{\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}\right)\cdot\frac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}\)

\(=\frac{\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\frac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}\)

\(=\frac{\sqrt{a}-1}{\sqrt{a}}\)

Bình luận (0)
 Khách vãng lai đã xóa
VN
Xem chi tiết
NP
Xem chi tiết
NT
31 tháng 7 2021 lúc 20:46

Bạn ơi, bạn ghi lại đề đi bạn. Khó hiểu quá!

Bình luận (2)
NT
31 tháng 7 2021 lúc 21:14

Đề là \(x+y-\sqrt{xy}=3\) với \(\sqrt{x+1}+\sqrt{y-1}=4\) pk bạn?

Bình luận (1)
NT
31 tháng 7 2021 lúc 22:37

Điều kiện: \(\left\{{}\begin{matrix}xy>0\\x,y\ge-1\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x+y-\sqrt{xy}=3\\\sqrt{x+1}+\sqrt{y+1}=4\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x+y-\sqrt{xy}=3\\x+2+2\sqrt{\left(x+1\right)\left(y+1\right)}=16\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x+y-\sqrt{xy}=3\\x+2+2\sqrt{xy+x+y+1}=16\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}S=x+y\\P=xy\end{matrix}\right.\) ( ĐK: \(S^2\ge4P\) ), khi đó hệ phương trình trở thành:

\(\left\{{}\begin{matrix}S-\sqrt{P}=3\\S+2+2\sqrt{S+P+1}=16\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}P=\left(S-3\right)^2\left(S\ge3\right)\\2\sqrt{S+\left(S-3\right)^2+1}=14-S\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3\le S\le14\\P=\left(3-S\right)^2\\4\left(S^2-5S+10\right)=196-28S+S^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3\le S\le14\\P=\left(3-S\right)^2\\3S^2+8S-156=0\end{matrix}\right.\) 

\(\Leftrightarrow\left\{{}\begin{matrix}S=6\\P=9\end{matrix}\right.\) hay \(\left\{{}\begin{matrix}x+y=6\\xy=9\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x+y=6\\x^2-x+9=0\end{matrix}\right.\) \(\Leftrightarrow x=y=3\)

Vậy hệ phương trình có nghiệm \(\left(x;y\right)=\left(3;3\right)\)

 

 

 

Bình luận (1)
LP
Xem chi tiết
NT
27 tháng 7 2021 lúc 13:20

\(\sqrt{x^3-6x^2+12x-8}\)

\(=\sqrt{\left(x-2\right)^3}\)

\(=\left|x-2\right|\cdot\sqrt{x-2}\)

Bình luận (0)
TH
Xem chi tiết
PL
Xem chi tiết
XT
28 tháng 5 2017 lúc 9:05

\(M=\dfrac{\sqrt{x-1}}{\sqrt{x+2}}\)

ĐKXĐ:x\(\ge\)1

M=\(\sqrt{\dfrac{x-1}{x+2}}=\sqrt{\dfrac{x+2-3}{x+2}}=\sqrt{1-\dfrac{3}{x+2}}\)

Để M lớn nhất thì \(\dfrac{3}{x+2}\) phải bé nhất <=>x+2 lớn nhất(không tìm được)

=>không tồn tại GTLN của M

---câu thứ 2 đọc đề không hiểu---

2.ĐKXĐ:x>-1

\(P=\dfrac{x+3}{\sqrt{x+1}}=\dfrac{x+1+2}{\sqrt{x+1}}=\sqrt{x+1}+\dfrac{2}{\sqrt{x+1}}\)

Áp dụng BĐT cosi cho 2 số dương

\(\sqrt{x+1}+\dfrac{2}{\sqrt{x+1}}\ge2\sqrt{\dfrac{2\sqrt{x+1}}{\sqrt{x+1}}}=2\sqrt{2}\)

Dấu = xảy ra khi x+1=2<=>x=1

=>GTNN của P=2\(\sqrt{2}\)đạt tại x=1

Bình luận (1)
TD
Xem chi tiết
H24
19 tháng 10 2020 lúc 21:09

PT: \(2\sqrt{3}-\sqrt{4+x}=0\) \(\left(x\ge-4\right)\)

\(\Leftrightarrow\sqrt{4+x}=2\sqrt{3}\)

\(\Leftrightarrow4+x=12\) \(\Leftrightarrow x=8\left(TM\right)\)

Vậy \(x=8\)

Bình luận (0)
 Khách vãng lai đã xóa