NP

{x cộng y trừ căn bậc hai xy bằng 3{căn bậc hai x cộng 1 cộng căn bậc hai y cộng 1 bằng 4

NT
31 tháng 7 2021 lúc 20:46

Bạn ơi, bạn ghi lại đề đi bạn. Khó hiểu quá!

Bình luận (2)
NT
31 tháng 7 2021 lúc 21:14

Đề là \(x+y-\sqrt{xy}=3\) với \(\sqrt{x+1}+\sqrt{y-1}=4\) pk bạn?

Bình luận (1)
NT
31 tháng 7 2021 lúc 22:37

Điều kiện: \(\left\{{}\begin{matrix}xy>0\\x,y\ge-1\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x+y-\sqrt{xy}=3\\\sqrt{x+1}+\sqrt{y+1}=4\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x+y-\sqrt{xy}=3\\x+2+2\sqrt{\left(x+1\right)\left(y+1\right)}=16\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x+y-\sqrt{xy}=3\\x+2+2\sqrt{xy+x+y+1}=16\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}S=x+y\\P=xy\end{matrix}\right.\) ( ĐK: \(S^2\ge4P\) ), khi đó hệ phương trình trở thành:

\(\left\{{}\begin{matrix}S-\sqrt{P}=3\\S+2+2\sqrt{S+P+1}=16\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}P=\left(S-3\right)^2\left(S\ge3\right)\\2\sqrt{S+\left(S-3\right)^2+1}=14-S\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3\le S\le14\\P=\left(3-S\right)^2\\4\left(S^2-5S+10\right)=196-28S+S^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3\le S\le14\\P=\left(3-S\right)^2\\3S^2+8S-156=0\end{matrix}\right.\) 

\(\Leftrightarrow\left\{{}\begin{matrix}S=6\\P=9\end{matrix}\right.\) hay \(\left\{{}\begin{matrix}x+y=6\\xy=9\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x+y=6\\x^2-x+9=0\end{matrix}\right.\) \(\Leftrightarrow x=y=3\)

Vậy hệ phương trình có nghiệm \(\left(x;y\right)=\left(3;3\right)\)

 

 

 

Bình luận (1)

Các câu hỏi tương tự
TD
Xem chi tiết
TD
Xem chi tiết
NV
Xem chi tiết
NT
Xem chi tiết
HM
Xem chi tiết
LL
Xem chi tiết
NA
Xem chi tiết
LA
Xem chi tiết
TQ
Xem chi tiết