Những câu hỏi liên quan
TT
Xem chi tiết
HN
2 tháng 10 2016 lúc 11:26

Đặt \(t=\sqrt{x},t\ge0\)

\(B=\frac{3t^2+t+10}{t+1}=\frac{3\left(t^2-2t+1\right)+7\left(t+1\right)}{t+1}=\frac{3\left(t-1\right)^2}{t+1}+7\ge7\)

Dấu "=" xảy ra khi t = 1 <=> x = 1

B đạt giá trị nhỏ nhất bằng 7 tại x = 1

Không tồn tại giá trị lớn nhất.
Bình luận (0)
NN
Xem chi tiết
ND
25 tháng 4 2016 lúc 20:25

13/4 bn nha

Bình luận (0)
VK
25 tháng 4 2016 lúc 20:27

13/4 tick minh nha ban

Bình luận (0)
NH
25 tháng 4 2016 lúc 21:14

Bằng 13/4 tick đúng cho mk đi mk chỉ chi tiết choyeu

Bình luận (0)
H24
Xem chi tiết
AH
5 tháng 11 2023 lúc 18:56

Lời giải:
Ta có:
$A^2=x+4+6-x+2\sqrt{(x+4)(6-x)}=10+2\sqrt{(x+4)(6-x)}\geq 10$

$\Rightarrow A\geq \sqrt{10}$ (do $A\geq 0$)

Vậy $A_{\min}=\sqrt{10}$. Giá trị này đạt được khi $(x+4)(6-x)=0\Leftrightarrow x=-4$ hoặc $x=6$

----------------------

Áp dụng BĐT Bunhiacopkxy:

$A^2\leq (x+4+6-x)(1+1)=10.2=20$

$\Rightarrow A\leq \sqrt{20}$

Vậy $A_{\max}=\sqrt{20}$

Bình luận (0)
LH
Xem chi tiết
MD
Xem chi tiết
MT
Xem chi tiết
1N
Xem chi tiết
H9
9 tháng 8 2023 lúc 8:49

Ta có: 

\(C=\sqrt{-x^2+6x}\) 

Mà: \(\sqrt{-x^2+6x}\ge0\) 

Dấu "=" xảy ra khi:

\(\sqrt{-x^2+6x}=0\)

\(\Leftrightarrow\sqrt{-x\left(x-6\right)}=0\)

\(\Leftrightarrow-x\left(x-6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)

Vậy: \(C_{min}=0\) khi \(\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)

Bình luận (2)
H9
9 tháng 8 2023 lúc 9:00

\(D=\sqrt{6x-2x^2}\)

Mà: \(\sqrt{6x-2x^2}\ge0\)

Dấu "=" xảy ra khi:

\(\sqrt{6x-2x^2}=0\)

\(\Leftrightarrow\sqrt{2x\left(3-x\right)}=0\)

\(\Leftrightarrow2x\left(3-x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)

Vậy: \(D_{min}=0\) khi \(\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)

Bình luận (0)
H24
9 tháng 8 2023 lúc 9:05

\(C=\sqrt{-x^2+6x}=\sqrt{9-\left(x^2-6x+9\right)}=\sqrt{9-\left(x-3\right)^2}\le\sqrt{9}=3\)

Dấu "=" xảy ra khi \(x=3\)

Vậy \(maxC=3\)

\(D=\sqrt{6x-2x^2}=\dfrac{1}{\sqrt{2}}\sqrt{12x-4x^2}=\dfrac{1}{\sqrt{2}}\sqrt{9-\left(4x^2-12x+9\right)}\)

\(=\dfrac{1}{\sqrt{2}}\sqrt{9-\left(2x-3\right)^2}\le\dfrac{1}{\sqrt{2}}.\sqrt{9}\)\(=\dfrac{3\sqrt{2}}{2}\)

Dấu "=" xảy ra khi \(x=\dfrac{3}{2}\)

Vậy \(maxD=\dfrac{3\sqrt{2}}{2}\)

Bình luận (0)
H24
Xem chi tiết
NL
31 tháng 3 2021 lúc 5:30

\(x+y=\sqrt{x+6}+\sqrt{y+6}\ge0\Rightarrow x+y\ge0\)

\(x+y=\sqrt{x+6}+\sqrt{y+6}\le\sqrt{2\left(x+y+12\right)}\)

\(\Rightarrow\left(x+y\right)^2\le2\left(x+y+12\right)\)

\(\Rightarrow\left(x+y+4\right)\left(x+y-6\right)\le0\)

\(\Rightarrow x+y\le6\) (do \(x+y+4>0\))

\(P_{max}=6\) khi \(x=y=3\)

\(x+y=\sqrt{x+6}+\sqrt{y+6}\)

\(\Rightarrow\left(x+y\right)^2=x+y+12+2\sqrt{\left(x+6\right)\left(y+6\right)}\ge x+y+12\)

\(\Rightarrow\left(x+y\right)^2-\left(x+y\right)-12\ge0\)

\(\Rightarrow\left(x+y+3\right)\left(x+y-4\right)\ge0\)

\(\Rightarrow x+y-4\ge0\) (do \(x+y+3>0\))

\(\Rightarrow x+y\ge4\)

\(P_{min}=4\) khi \(\left(x;y\right)=\left(-6;10\right)\) và hoán vị

Bình luận (0)
TH
30 tháng 3 2021 lúc 21:40

Ta có: x - \(\sqrt{x+6}\) = \(\sqrt{y+6}\) - y (x; y \(\ge\) -6)

\(\Leftrightarrow\) P = x + y  = \(\sqrt{x+6}+\sqrt{y+6}\)

\(\Leftrightarrow\) P2 = x + y + 12 + 2\(\sqrt{\left(x+6\right)\left(y+6\right)}\)

Áp dụng BĐT Cô-si cho 2 số ko âm x + 6 và y + 6 ta có:

\(x+y+12\ge2\sqrt{\left(x+6\right)\left(y+6\right)}\)

\(\Leftrightarrow\) P2 \(\le\) x + y + 12 + x + y + 12 = 2x + 2y + 24 = 2P + 24

\(\Leftrightarrow\) P2 - 2P - 24 \(\le\) 0

\(\Leftrightarrow\) P2 - 36 + 12 - 2P \(\le\) 0

\(\Leftrightarrow\) (P - 6)(P + 6) + 2(6 - P) \(\le\) 0

\(\Leftrightarrow\) (P - 6)(P + 4) \(\le\) 0

\(\Leftrightarrow\) \(\left[{}\begin{matrix}\left\{{}\begin{matrix}P-6\ge0\\P+4\le0\end{matrix}\right.\\\left\{{}\begin{matrix}P-6\le0\\P+4\ge0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left[{}\begin{matrix}-4\ge P\ge6\left(KTM\right)\\6\ge P\ge-4\left(TM\right)\end{matrix}\right.\)

\(\Rightarrow\) -4 \(\le\) P \(\le\) 6

Vậy ...

Chúc bn học tốt!

Bình luận (0)
TU
Xem chi tiết
ZZ
30 tháng 8 2019 lúc 20:17

e chỉ biết giá trị lớn nhất thôi ạ:(

\(A=\sqrt{x-2}+\sqrt{10-x}\)

\(\Rightarrow A^2=\left(\sqrt{x-2}+\sqrt{10-x}\right)^2\)

Áp dụng BĐT Bunhiacopski ta được:

\(A^2\le\left(\sqrt{x-2}^2+\sqrt{10-x}^2\right)\left(1^2+1^2\right)=2\left(x-2+10-x\right)=16\)

\(\Rightarrow A\le4\) vì \(A\ge0\)

Dấu "=" chị tự xét hộ ạ.

Bình luận (0)
H24
30 tháng 8 2019 lúc 20:24

\(A\ge\sqrt{x-2+10-x}=\sqrt{8}=2\sqrt{2}\)

Đẳng thức xảy ra khi \(x=2\text{hoặc }x=10\)

Bình luận (0)