1N

Tìm GTLN hoặc GTNN của:

\(C=\sqrt{-x^2+6x}\)

\(D=\sqrt{6x-2x^2}\)

H9
9 tháng 8 2023 lúc 8:49

Ta có: 

\(C=\sqrt{-x^2+6x}\) 

Mà: \(\sqrt{-x^2+6x}\ge0\) 

Dấu "=" xảy ra khi:

\(\sqrt{-x^2+6x}=0\)

\(\Leftrightarrow\sqrt{-x\left(x-6\right)}=0\)

\(\Leftrightarrow-x\left(x-6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)

Vậy: \(C_{min}=0\) khi \(\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)

Bình luận (2)
H9
9 tháng 8 2023 lúc 9:00

\(D=\sqrt{6x-2x^2}\)

Mà: \(\sqrt{6x-2x^2}\ge0\)

Dấu "=" xảy ra khi:

\(\sqrt{6x-2x^2}=0\)

\(\Leftrightarrow\sqrt{2x\left(3-x\right)}=0\)

\(\Leftrightarrow2x\left(3-x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)

Vậy: \(D_{min}=0\) khi \(\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)

Bình luận (0)
H24
9 tháng 8 2023 lúc 9:05

\(C=\sqrt{-x^2+6x}=\sqrt{9-\left(x^2-6x+9\right)}=\sqrt{9-\left(x-3\right)^2}\le\sqrt{9}=3\)

Dấu "=" xảy ra khi \(x=3\)

Vậy \(maxC=3\)

\(D=\sqrt{6x-2x^2}=\dfrac{1}{\sqrt{2}}\sqrt{12x-4x^2}=\dfrac{1}{\sqrt{2}}\sqrt{9-\left(4x^2-12x+9\right)}\)

\(=\dfrac{1}{\sqrt{2}}\sqrt{9-\left(2x-3\right)^2}\le\dfrac{1}{\sqrt{2}}.\sqrt{9}\)\(=\dfrac{3\sqrt{2}}{2}\)

Dấu "=" xảy ra khi \(x=\dfrac{3}{2}\)

Vậy \(maxD=\dfrac{3\sqrt{2}}{2}\)

Bình luận (0)

Các câu hỏi tương tự
3P
Xem chi tiết
MT
Xem chi tiết
H24
Xem chi tiết
DA
Xem chi tiết
LH
Xem chi tiết
DN
Xem chi tiết
LA
Xem chi tiết
PA
Xem chi tiết
VL
Xem chi tiết