Ta có:
\(C=\sqrt{-x^2+6x}\)
Mà: \(\sqrt{-x^2+6x}\ge0\)
Dấu "=" xảy ra khi:
\(\sqrt{-x^2+6x}=0\)
\(\Leftrightarrow\sqrt{-x\left(x-6\right)}=0\)
\(\Leftrightarrow-x\left(x-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)
Vậy: \(C_{min}=0\) khi \(\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)
\(D=\sqrt{6x-2x^2}\)
Mà: \(\sqrt{6x-2x^2}\ge0\)
Dấu "=" xảy ra khi:
\(\sqrt{6x-2x^2}=0\)
\(\Leftrightarrow\sqrt{2x\left(3-x\right)}=0\)
\(\Leftrightarrow2x\left(3-x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)
Vậy: \(D_{min}=0\) khi \(\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)
\(C=\sqrt{-x^2+6x}=\sqrt{9-\left(x^2-6x+9\right)}=\sqrt{9-\left(x-3\right)^2}\le\sqrt{9}=3\)
Dấu "=" xảy ra khi \(x=3\)
Vậy \(maxC=3\)
\(D=\sqrt{6x-2x^2}=\dfrac{1}{\sqrt{2}}\sqrt{12x-4x^2}=\dfrac{1}{\sqrt{2}}\sqrt{9-\left(4x^2-12x+9\right)}\)
\(=\dfrac{1}{\sqrt{2}}\sqrt{9-\left(2x-3\right)^2}\le\dfrac{1}{\sqrt{2}}.\sqrt{9}\)\(=\dfrac{3\sqrt{2}}{2}\)
Dấu "=" xảy ra khi \(x=\dfrac{3}{2}\)
Vậy \(maxD=\dfrac{3\sqrt{2}}{2}\)