Những câu hỏi liên quan
CD
Xem chi tiết
H24
3 tháng 7 2020 lúc 16:37

\(\frac{4x^2+9x+18\sqrt{x}+9}{4x\sqrt{x}+4\sqrt{x}}+\frac{4x\sqrt{x}+4\sqrt{x}}{4x^2+9x+18\sqrt{x}+9}-2=\frac{\left(-4x\sqrt{x}+4x^2+9x+22\sqrt{x}+9\right)^2}{\left(4x^2+9x+18\sqrt{x}+9\right)\left(4x\sqrt{x}+4\sqrt{x}\right)}\ge0\)

Bình luận (0)
 Khách vãng lai đã xóa
TL
3 tháng 7 2020 lúc 21:12

Đặt \(M=\frac{4x^2+9x+18\sqrt{x}+9}{4x\sqrt{x}+4x}\left(x>0\right)\Rightarrow M>0\)

Đặt \(y=\sqrt{x}>0\)ta có \(M=\frac{4x^2+9x+18\sqrt{x}+9}{4x\sqrt{x}+4x}=\frac{4y^4+9y^2+18y+9}{4y^3+4y^2}\)\(=\frac{3\left(4y^3+4y^2\right)+\left(4y^2-12y^3-3y^2+18y+9\right)}{4y^3+4y^2}=3+\frac{\left(2y^2-3y-3\right)^2}{4y^3+4y^2}\ge3\)

\(y>0\Rightarrow\hept{\begin{cases}4y^3+4y^2>0\\\left(2y^2-3y-3\right)^2\ge0\end{cases}\Rightarrow\frac{\left(2y-3y-3\right)^2}{4y^3+4y^2}\ge0}\)

Đẳng thức xảy ra \(\Leftrightarrow2y^2-3y-3=0\Leftrightarrow y=\frac{3+\sqrt{33}}{4}\left(y>0\right)\)

\(\Rightarrow x=\left(\frac{3+\sqrt{33}}{4}\right)^2=\frac{21+3\sqrt{33}}{8}\)

Khi đó \(A=M+\frac{1}{M}=\frac{8M}{9}+\left(\frac{M}{9}+\frac{1}{M}\right)\ge\frac{8\cdot3}{9}+2\sqrt{\frac{M}{9}\cdot\frac{1}{M}}=\frac{8}{3}+\frac{2}{3}=\frac{10}{3}\)

Đẳng thức xảy ra \(\Leftrightarrow\hept{\begin{cases}M=3\\\frac{M}{9}=\frac{1}{M}\end{cases}\Leftrightarrow M=3\Leftrightarrow x=\frac{21+3\sqrt{33}}{8}}\)

Vậy \(A_{min}=\frac{10}{3}\Leftrightarrow x=\frac{21+3\sqrt{33}}{8}\)

Bình luận (0)
 Khách vãng lai đã xóa
DH
Xem chi tiết
NC
17 tháng 2 2020 lúc 16:33

1. Xét điều kiện:

\(\hept{\begin{cases}x-1\ge0\\x-x^2\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x-1\ge0\left(1\right)\\x\left(1-x\right)\ge0\left(2\right)\end{cases}}\)

(1) <=> x \(\ge\)1 > 0   thay vào (2) ta có: 1 - x \(\ge\)0 <=> x \(\le\)1

Do đó chỉ có thể xảy ra trường hợp x = 1

=> ĐK : x = 1

Với x = 1 thử vào phương trình ta có: 0 - 0 + 2 = 2 ( thỏa mãn)

Vậy x = 1 là nghiệm của phương trình.

Bình luận (0)
 Khách vãng lai đã xóa
NC
17 tháng 2 2020 lúc 17:02

bài 2: ĐK:\(0\le x\le1\)

+) Với điều kiện: A,B không âm

 \(\left(A+B\right)^2\ge A^2+B^2\)(1)

<=> \(A^2+B^2+2AB\ge A^2+B^2\)

<=> \(2AB\ge0\)luôn đúng

Dấu "=" xảy ra <=> A = 0 hoặc B = 0

Áp dụng với \(\left(\sqrt{1-x}+\sqrt{x}\right)^2\ge1-x+x=1\)

=> \(\sqrt{1-x}+\sqrt{x}\ge1\)

Dấu "=" xảy ra <=>  x = 0 hoặc x = 1

+) Với điều kiện C, D không âm

\(\left(C+D\right)^2\ge C^2-D^2\)(2)

Thật vậy: (2)<=> \(2CD+D^2\ge-D^2\)

<=> \(D\left(C+D\right)\ge0\)luôn đúng

Dấu "=" xayra <=> D = 0 hoặc C + D = 0

Áp dụng" \(\left(\sqrt{1+x}+\sqrt{x}\right)^2\ge1+x-x=1\)

=> \(\sqrt{1+x}+\sqrt{x}\ge1\)

Dấu "=" xảy ra <=> x = 0 

Vậy khi đó: 

\(P=\sqrt{1-x}+\sqrt{1+x}+\sqrt{4x}\)

\(=\left(\sqrt{1-x}+\sqrt{x}\right)+\left(\sqrt{1+x}+\sqrt{x}\right)\)

\(\ge1+1=2\)

Dấu "=" xảy ra <=> x = 0

Bình luận (0)
 Khách vãng lai đã xóa
NK
Xem chi tiết
NQ
1 tháng 9 2021 lúc 11:53

ta có :

\(\sqrt{x^2+2x+1}+\sqrt{x^2+4x+4}=\left|x+1\right|+\left|x+2\right|\ge\left|x+1-x-2\right|=1\)

Dấu bằng xảy ra khi : \(\left(x+1\right)\left(x+2\right)\le0\Leftrightarrow-2\le x\le-1\)

Bình luận (0)
 Khách vãng lai đã xóa
HN
Xem chi tiết
BV
16 tháng 7 2016 lúc 16:49

ta có: \(4x^2+9x+18\sqrt{x}+9=4x^2+9\left(\sqrt{x}+1\right)^2\),\(4x\sqrt{x}+4x=4x\left(\sqrt{x}+1\right)\)
Đặt \(a=x,b=\sqrt{x}+1\)ta có:
\(A=\frac{4a^2+9b^2}{4ab}+\frac{4ab}{4a^2+9b^2}=t+\frac{1}{t},t=\frac{4a^2+9b^2}{4ab}\)
có \(\frac{4a^2+9b^2}{4ab}=t\Rightarrow4a^2-t.4ab+9b^2=0\Leftrightarrow4.\left(\frac{a}{b}\right)^2-4t.\frac{a}{b}+9=0,\)do a khác 0.
Đặt \(\frac{a}{b}=y\Rightarrow4y^2-t.4y+9=0\)\(\Delta=16t^2-36\ge0\Leftrightarrow t\ge\frac{3}{2}\left(t>0\right)\)
xét \(f\left(t\right)=t+\frac{1}{t}\left(t\ge\frac{3}{2}\right)\)
lấy \(\frac{3}{2}< t_1< t_2\)
\(\Rightarrow f\left(t_1\right)-f\left(t_2\right)=\left(t_1-t_2\right)\left(\frac{t_1.t_2-1}{t_1.t_2}\right)< 0\)
suy ra với t càng tăng thì f(t) càng lớn vậy min \(f\left(t\right)=\frac{3}{2}+\frac{2}{3}=\frac{13}{6}\)
các em tự tìm x nhé.

Bình luận (0)
PA
9 tháng 7 2016 lúc 15:28

bài này bạn áp dụng BĐT cô si cko 2 số dương là đc.

đáp án: Min A=  2

Bình luận (0)
HN
9 tháng 7 2016 lúc 16:36

Phan Quỳnh Anh Cách của bạn không ổn đâu, với lại kết quả bạn chưa đúng ^^

Bình luận (0)
H24
Xem chi tiết
NT
30 tháng 5 2023 lúc 20:38

a: \(P=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{x-9}=\dfrac{-3\left(\sqrt{x}+1\right)}{x-9}\)

\(M=\dfrac{-3\left(\sqrt{x}+1\right)}{x-9}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}+1}=\dfrac{-3}{\sqrt{x}+3}\)

b: \(A=\dfrac{-3x+4x+7}{\sqrt{x}+3}=\dfrac{x+7}{\sqrt{x}+3}=\dfrac{x-9+16}{\sqrt{x}+3}\)

=>\(A=\sqrt{x}-3+\dfrac{16}{\sqrt{x}+3}=\sqrt{x}+3+\dfrac{16}{\sqrt{x}+3}-6>=2\sqrt{16}-6=2\)

 

Dấu = xảy ra khi x=1

Bình luận (0)
HA
Xem chi tiết
H24
13 tháng 5 2021 lúc 22:58

`P=\sqrt{1-x}+\sqrt{1+x}+2\sqrtx(0<=x<=1)`
Áp dụng BĐT `\sqrta+\sqrtb>=\sqrt{a+b}`
`=>\sqrt{1-x}+\sqrt{x}>=1`
`=>P>=1+\sqrtx+\sqrt{x+1}>=1+0+1=2`
Dấu "=" `<=>x=0`

Bình luận (0)
HN
Xem chi tiết
NT
9 tháng 7 2016 lúc 21:20

dùng côsi ra = 1 chắc v

Bình luận (0)
H24
10 tháng 7 2016 lúc 16:52

ê tuấn nếu cô-si thì mk nghĩ phải =2 chứ sao =1 được 

Bình luận (1)
NT
11 tháng 7 2016 lúc 11:51

đề Nguyễn du

Bình luận (0)
MV
Xem chi tiết
MY
13 tháng 8 2021 lúc 18:30

a,\(A=2\sqrt{x^2+x+\dfrac{1}{2}}=2\sqrt{x^2+x+\dfrac{1}{4}+\dfrac{1}{4}}=2\sqrt{\left(x+\dfrac{1}{2}\right)^2+\dfrac{1}{4}}\)

\(=\sqrt{4\left(x+\dfrac{1}{2}\right)^2+1}\ge1\) dấu"=" xảy ra<=>x=-1/2

\(B=\sqrt{2\left(x^2-2x+\dfrac{5}{2}\right)}=\sqrt{2\left[x^2-2x+1+\dfrac{3}{2}\right]}\)

\(=\sqrt{2\left(x-1\right)^2+3}\ge\sqrt{3}\) dấu"=" xảy ra<=>x=1

\(C=\dfrac{x-3}{\sqrt{x-1}-\sqrt{2}}\ge\dfrac{-2}{-\sqrt{2}}=\sqrt{2}\) dấu"=" xảy ra<=>x=1

\(D=x-2\sqrt{x+2}\ge-2\) dấu"=" xảy ra<=>x=-2

 

Bình luận (1)
EC
13 tháng 8 2021 lúc 19:21

d)D=\(x-2\sqrt{x+2}=\left(x+2\right)-2\sqrt{x+2}+1-3\)

    \(=\left(\sqrt{x+2}-1\right)^2-3\ge-3\)

Dấu "=" xảy ra \(\Leftrightarrow\sqrt{x+2}=1\Leftrightarrow x+2=1\Leftrightarrow x=-1\)

Bình luận (0)
HD
Xem chi tiết
NT
7 tháng 9 2021 lúc 21:09

Bài 5: 

a: Thay \(x=4+2\sqrt{3}\) vào E, ta được:

\(E=\dfrac{\sqrt{3}+1-1}{\sqrt{3}+1-3}=\dfrac{\sqrt{3}}{\sqrt{3}-2}=-3-2\sqrt{3}\)

b: Để E<1 thì E-1<0

\(\Leftrightarrow\dfrac{\sqrt{x}-1-\sqrt{x}+3}{\sqrt{x}-3}< 0\)

\(\Leftrightarrow\sqrt{x}-3< 0\)

hay x<9

Kết hợp ĐKXĐ, ta được: \(\left\{{}\begin{matrix}0\le x< 9\\x\ne1\end{matrix}\right.\)

c: Để E nguyên thì \(4⋮\sqrt{x}-3\)

\(\Leftrightarrow\sqrt{x}-3\in\left\{-2;1;2;4\right\}\)

\(\Leftrightarrow\sqrt{x}\in\left\{4;5;7\right\}\)

hay \(x\in\left\{16;25;49\right\}\)

Bình luận (0)
NT
7 tháng 9 2021 lúc 21:17

Câu 2:
a) Ta có \(x=4-2\sqrt{3}\Rightarrow\sqrt{x}=\sqrt{\left(\sqrt{3}-2\right)^2}=\sqrt{3}-2\)

Thay \(x=\sqrt{3}-1\) vào \(B\), ta được

\(B=\dfrac{\sqrt{3}-1-2}{\sqrt{3}-1+1}=\dfrac{\sqrt{3}-3}{\sqrt{3}}=1-\sqrt{3}\)

b) Để \(B\) âm thì \(\dfrac{\sqrt{x}-2}{\sqrt{x}+1}< 0\) mà \(\sqrt{x}+1\ge1>0\forall x\) \(\Rightarrow\sqrt{x}-2< 0\Rightarrow\sqrt{x}< 2\Rightarrow x< 4\)

c) Ta có \(B=\dfrac{\sqrt{x}-2}{\sqrt{x}+1}=1-\dfrac{3}{\sqrt{x}+1}\)

Với mọi \(x\ge0\) thì \(\sqrt{x}\ge0\Rightarrow\sqrt{x}+1\ge1\Rightarrow\dfrac{3}{\sqrt{x}+1}\le3\Rightarrow B=1-\dfrac{3}{\sqrt{x}+1}\ge-2\)

Dấu "=" xảy ra khi \(\sqrt{x}+1=1\Leftrightarrow x=0\)

Vậy \(B_{min}=-2\) khi \(x=0\)

Bình luận (0)
NP
Xem chi tiết
NT
24 tháng 8 2021 lúc 15:06

Bài 1: 

Ta có: \(D=\sqrt{16x^4}-2x^2+1\)

\(=4x^2-2x^2+1\)

\(=2x^2+1\)

Bình luận (0)