MV

Tìm giá trị nhỏ nhất của biểu thức:

a) A = \(\sqrt{4x^2+4x+2}\)

b) B = \(\sqrt{2x^2-4x+5}\)

c) C = \(\dfrac{x-3}{\sqrt{x-1}-\sqrt{2}}\)

d) D = \(x-2\sqrt{x+2}\)

MY
13 tháng 8 2021 lúc 18:30

a,\(A=2\sqrt{x^2+x+\dfrac{1}{2}}=2\sqrt{x^2+x+\dfrac{1}{4}+\dfrac{1}{4}}=2\sqrt{\left(x+\dfrac{1}{2}\right)^2+\dfrac{1}{4}}\)

\(=\sqrt{4\left(x+\dfrac{1}{2}\right)^2+1}\ge1\) dấu"=" xảy ra<=>x=-1/2

\(B=\sqrt{2\left(x^2-2x+\dfrac{5}{2}\right)}=\sqrt{2\left[x^2-2x+1+\dfrac{3}{2}\right]}\)

\(=\sqrt{2\left(x-1\right)^2+3}\ge\sqrt{3}\) dấu"=" xảy ra<=>x=1

\(C=\dfrac{x-3}{\sqrt{x-1}-\sqrt{2}}\ge\dfrac{-2}{-\sqrt{2}}=\sqrt{2}\) dấu"=" xảy ra<=>x=1

\(D=x-2\sqrt{x+2}\ge-2\) dấu"=" xảy ra<=>x=-2

 

Bình luận (1)
EC
13 tháng 8 2021 lúc 19:21

d)D=\(x-2\sqrt{x+2}=\left(x+2\right)-2\sqrt{x+2}+1-3\)

    \(=\left(\sqrt{x+2}-1\right)^2-3\ge-3\)

Dấu "=" xảy ra \(\Leftrightarrow\sqrt{x+2}=1\Leftrightarrow x+2=1\Leftrightarrow x=-1\)

Bình luận (0)

Các câu hỏi tương tự
HA
Xem chi tiết
TC
Xem chi tiết
CP
Xem chi tiết
DM
Xem chi tiết
MH
Xem chi tiết
BA
Xem chi tiết
H24
Xem chi tiết
KK
Xem chi tiết
KN
Xem chi tiết