Những câu hỏi liên quan
KR
Xem chi tiết
H24
16 tháng 1 2021 lúc 20:40

Hướng dẫn. 

Bạn chứng minh bất đẳng thức $\dfrac{1}{\sqrt{1+8a^3}} \geqslant \dfrac{5}{9}-\dfrac{2}{9}a^2$ rồi cộng lại là xong.

 

Bình luận (2)
BB
Xem chi tiết
RH
15 tháng 1 2022 lúc 7:30

Áp dụng BĐT Bunyakovsky, ta có:

\(a+b+c\le\sqrt{3(a^2+b^2+c^2)}=\sqrt{3.3}=3\)

Áp dụng BĐT Cauchy, ta có:

\(A=\sum{\dfrac{1}{\sqrt{1+8a^3}}}=\sum{\dfrac{1}{\sqrt{(2a+1)(4a^2-2a+1)}}} \\\ge\sum{\dfrac{1}{\dfrac{4a^2+2}{2}}}=\sum{\dfrac{1}{2a^2+1}} \)

Ta cần chứng minh: \(\dfrac{1}{2a^2+1}\ge\dfrac{-4}{9}a+\dfrac{7}{9} \\<=>\dfrac{8a^3-14a^2+4a+2}{9(2a^2+1)}\ge0 \\<=>\dfrac{2(a-1)^2(4a+1)}{9(2a^2+1)}\ge0 (luôn\ đúng\ với\ mọi\ a>0) \\->\sum{\dfrac{1}{2a^2+1}}\ge\dfrac{-4}{9}(a+b+c)+\dfrac{21}{9}\ge\dfrac{-4}{9}.3+\dfrac{21}{9}=1 \\->A\ge1 \)

Đẳng thức xảy ra khi a = b = c = 1.

Vậy GTNN của A là 1 (khi a = b = c = 1).

Bình luận (0)
LQ
Xem chi tiết
NL
7 tháng 5 2023 lúc 11:54

Từ \(8b-9a=31\Leftrightarrow8b=9a+31\)

Ta có: \(\dfrac{11}{17}< \dfrac{a}{b}< \dfrac{23}{29}\Rightarrow\left\{{}\begin{matrix}17a>11b\\29a< 23b\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}17.8a>11.8b\\29.8a< 23.8b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}136a>11\left(9a+31\right)\\232a< 23\left(9a+31\right)\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}136a>99a+341\\232a< 207a+713\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}37a>341\\25a< 713\end{matrix}\right.\)

\(\Rightarrow\dfrac{341}{37}< a< \dfrac{713}{25}\)

Mà a là số tự nhiên \(\Rightarrow9< a< 29\) (1)

Lại có \(8b-9a=31\Leftrightarrow8\left(b-a\right)=a+31\)

\(\Rightarrow a+31\) chia hết cho 8 \(\Rightarrow a\) chia 8 dư 1 (2)

(1);(2) \(\Rightarrow\left[{}\begin{matrix}a=17\\a=25\end{matrix}\right.\)

Với \(a=17\Rightarrow b=23\)

Với \(a=25\Rightarrow b=32\)

Bình luận (0)
ND
Xem chi tiết
VC
Xem chi tiết
AH
10 tháng 11 2017 lúc 0:51

Lời giải:

ĐKĐB \(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}=2\)

\(\Leftrightarrow 1-\frac{a}{a+1}+1-\frac{b}{b+1}+1-\frac{c}{c+1}=2\)

\(\Leftrightarrow \frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}=1\)

-----------------------------------------------------------

Ta có: \(\text{VT}=1-\frac{8a^2}{8a^2+1}+1-\frac{8b^2}{8b^2+1}+1-\frac{8c^2}{8c^2+1}\)

\(\Leftrightarrow \text{VT}=3-\underbrace{\left(\frac{8a^2}{8a^2+1}+\frac{8b^2}{8b^2+1}+\frac{8c^2}{8c^2+1}\right)}_{M}\) (1)

Áp dụng BĐT AM-GM:

\(4a^2+1\geq 4a\Rightarrow 8a^2+1=4a^2+(4a^2+1)\geq 4a^2+4a\)

\(\Rightarrow \frac{8a^2}{8a^2+1}\leq \frac{8a^2}{4a^2+4a}=\frac{2a}{a+1}\)

Thực hiện tương tự cho các phân thức còn lại và cộng theo vế:

\(\Rightarrow M\leq 2\left(\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}\right)=2\) (2)

Từ \((1);(2)\Rightarrow \text{VT}\geq 1\) (đpcm)

Dấu bằng xảy ra khi \(a=b=c=\frac{1}{2}\)

Bình luận (0)
HM
Xem chi tiết
H24
Xem chi tiết
NL
25 tháng 3 2022 lúc 20:44

1.

Ta sẽ chứng minh BĐT sau: \(\dfrac{1}{a^2+b^2}+\dfrac{1}{b^2+c^2}+\dfrac{1}{c^2+a^2}\ge\dfrac{10}{\left(a+b+c\right)^2}\)

Do vai trò a;b;c như nhau, ko mất tính tổng quát, giả sử \(c=min\left\{a;b;c\right\}\)

Đặt \(\left\{{}\begin{matrix}x=a+\dfrac{c}{2}\\y=b+\dfrac{c}{2}\end{matrix}\right.\) \(\Rightarrow x+y=a+b+c\)

Đồng thời \(b^2+c^2=\left(b+\dfrac{c}{2}\right)^2+\dfrac{c\left(3c-4b\right)}{4}\le\left(b+\dfrac{c}{2}\right)^2=y^2\)

Tương tự: \(a^2+c^2\le x^2\) ; \(a^2+b^2\le x^2+y^2\)

Do đó: \(A\ge\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{x^2+y^2}\)

Nên ta chỉ cần chứng minh: \(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{x^2+y^2}\ge\dfrac{10}{\left(x+y\right)^2}\)

Mà \(\dfrac{1}{\left(x+y\right)^2}\le\dfrac{1}{4xy}\) nên ta chỉ cần chứng minh:

\(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{x^2+y^2}\ge\dfrac{5}{2xy}\)

\(\Leftrightarrow\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{2}{xy}+\dfrac{1}{x^2+y^2}-\dfrac{1}{2xy}\ge0\)

\(\Leftrightarrow\dfrac{\left(x-y\right)^2}{x^2y^2}-\dfrac{\left(x-y\right)^2}{2xy\left(x^2+y^2\right)}\ge0\)

\(\Leftrightarrow\dfrac{\left(x-y\right)^2\left(2x^2+2y^2-xy\right)}{2x^2y^2}\ge0\) (luôn đúng)

Vậy \(A\ge\dfrac{10}{\left(a+b+c\right)^2}\ge\dfrac{10}{3^2}=\dfrac{10}{9}\)

Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(\dfrac{3}{2};\dfrac{3}{2};0\right)\) và các hoán vị của chúng

Bình luận (0)
NL
25 tháng 3 2022 lúc 20:56

2.

Ta có: \(B=\dfrac{ab+1-1}{1+ab}+\dfrac{bc+1-1}{1+bc}+\dfrac{ca+1-1}{1+ca}\)

\(B=3-\left(\dfrac{1}{1+ab}+\dfrac{1}{1+ca}+\dfrac{1}{1+ab}\right)\)

Đặt \(C=\dfrac{1}{1+ab}+\dfrac{1}{1+bc}+\dfrac{1}{1+ca}\)

Ta có: \(C\ge\dfrac{9}{3+ab+bc+ca}\ge\dfrac{9}{3+\dfrac{1}{3}\left(a+b+c\right)^2}=\dfrac{27}{13}\)

\(\Rightarrow B\le3-\dfrac{27}{13}=\dfrac{12}{13}\)

\(B_{max}=\dfrac{12}{13}\) khi \(a=b=c=\dfrac{2}{3}\)

Do \(a;b;c\in\left[0;1\right]\)

\(\Rightarrow\left(a-1\right)\left(b-1\right)\ge0\)\(\Leftrightarrow ab+1\ge a+b\)

\(\Leftrightarrow ab+c+1\ge a+b+c=2\)

\(\Rightarrow abc+ab+c+1\ge ab+c+1\ge2\)

\(\Rightarrow\left(c+1\right)\left(ab+1\right)\ge2\)

\(\Rightarrow\dfrac{1}{ab+1}\le\dfrac{c+1}{2}\)

Hoàn toàn tương tự, ta có: 

\(\dfrac{1}{bc+1}\le\dfrac{a+1}{2}\) ; \(\dfrac{1}{ca+1}\le\dfrac{b+1}{2}\)

Cộng vế: \(C\le\dfrac{a+b+c+3}{2}=\dfrac{5}{2}\)

\(\Rightarrow B\ge3-\dfrac{5}{2}=\dfrac{1}{2}\)

\(B_{min}=\dfrac{1}{2}\) khi \(\left(a;b;c\right)=\left(0;1;1\right)\) và các hoán vị của chúng

Bình luận (0)
QT
Xem chi tiết
LP
5 tháng 6 2023 lúc 7:15

đkxđ: \(abc\ne0\)

\(a+b+c=\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\) \(\Rightarrow\left(a+b+c\right)^2=\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2\)

 Kết hợp với \(a^2+b^2+c^2=\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\) và đẳng thức \(\left(x+y+z\right)^2-\left(x^2+y^2+z^2\right)=2\left(xy+yz+zx\right)\), dễ dàng suy ra \(ab+bc+ca=\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\) \(\Leftrightarrow ab+bc+ca=\dfrac{a+b+c}{abc}\) \(\Leftrightarrow a+b+c=abc\left(ab+bc+ca\right)\) (1)

 Mặt khác, \(a+b+c=\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\) \(\Leftrightarrow a+b+c=\dfrac{ab+bc+ca}{abc}\) \(\Leftrightarrow ab+bc+ca=abc\left(a+b+c\right)\) (2)

Từ (1) và (2), suy ra \(a+b+c=\left(abc\right)^2\left(a+b+c\right)\) \(\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\abc=\pm1\end{matrix}\right.\)

TH1: \(a+b+c=0\), suy ra \(\dfrac{ab+bc+ca}{abc}=0\) hay \(ab+bc+ca=0\), từ đó suy ra \(a^2+b^2+c^2=0\) \(\Leftrightarrow a=b=c=0\), loại

TH2: \(abc=1\). Ta dễ dàng suy ra được \(a+b+c=ab+bc+ca\). Ta có \(\left(a-1\right)\left(b-1\right)\left(c-1\right)\) \(=abc-\left(ab+bc+ca\right)+\left(a+b+c\right)-1\) \(=0\) nên suy ra \(\left[{}\begin{matrix}a=1\\b=1\\c=1\end{matrix}\right.\). Giả sử \(a=1\). Khi đó ta có \(bc=1\)

 Thay lại vào 2 pt đã cho, ta đều thấy thỏa mãn. Vậy ta tìm được 1 tập nghiệm của hệ là \(S_1=\left\{\left(a;b;c\right)|a=1;bc=1\right\}\) và các hoán vị của mỗi nghiệm thuộc tập S1.

 TH3: \(abc=-1\). Ta kiểm chứng được \(a+b+c+ab+bc+ca=0\). Ta có \(\left(a+1\right)\left(b+1\right)\left(c+1\right)=abc+ab+bc+ca+a+b+c+1=0\) nên \(\left[{}\begin{matrix}a=-1\\b=-1\\c=-1\end{matrix}\right.\). Nếu \(a=-1\) thì suy ra \(bc=1\). Thử lại vào cả 2 pt ta đều thấy thỏa mãn. Như vậy ta tìm được tập nghiệm nữa của hpt đã cho là \(S_2=\left\{\left(a;b;c\right)|a=-1;bc=1\right\}\) và các hoán vị của mỗi bộ nghiệm trong các nghiệm thuộc \(S_2\).

 Vậy tập nghiệm của hpt đã cho là \(S=S_1\cup S_2=\left\{\left(a;b;c\right)|a=\pm1;bc=1\right\}\) và các hoán vị của mỗi phần tử thuộc S.

 

Bình luận (0)
BB
Xem chi tiết
NL
2 tháng 1 2022 lúc 17:09

\(\dfrac{a^2}{\sqrt{3a^2+14ab+8b^2}}=\dfrac{a^2}{\sqrt{\left(a+4b\right)\left(3a+2b\right)}}\ge\dfrac{2a^2}{a+4b+3a+2b}=\dfrac{a^2}{2a+3b}\)

Tương tự và cộng lại:

\(VT\ge\dfrac{a^2}{2a+3b}+\dfrac{b^2}{2b+3c}+\dfrac{c^2}{2c+3a}\ge\dfrac{\left(a+b+c\right)^2}{5a+5b+5c}=\dfrac{a+b+c}{5}\) (đpcm)

Bình luận (0)