Giải pt \(\sqrt[3]{x+1}\)+\(\sqrt[3]{x+2}\)+\(\sqrt[3]{x+3}\)=0
b5: giải pt ;
a, \(\sqrt{49\left(1-2x+x^2\right)}-35=0\)
b, \(\sqrt{x^2-9}-5\sqrt{x+3}=0\)
c, \(\dfrac{\sqrt{x}-2}{\sqrt{x}+1}=\dfrac{\sqrt{x}-1}{\sqrt{x}+3}\)
a) Ta có: \(\sqrt{49\left(x^2-2x+1\right)}-35=0\)
\(\Leftrightarrow7\left|x-1\right|=35\)
\(\Leftrightarrow\left|x-1\right|=5\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=5\\x-1=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=-4\end{matrix}\right.\)
b)
ĐKXĐ: \(\left[{}\begin{matrix}x\ge3\\x\le-3\end{matrix}\right.\)
Ta có: \(\sqrt{x^2-9}-5\sqrt{x+3}=0\)
\(\Leftrightarrow\sqrt{x+3}\left(\sqrt{x-3}-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+3}=0\\\sqrt{x-3}=5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x-3=25\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\left(nhận\right)\\x=28\left(nhận\right)\end{matrix}\right.\)
c) ĐKXĐ: \(x\ge0\)
Ta có: \(\dfrac{\sqrt{x}-2}{\sqrt{x}+1}=\dfrac{\sqrt{x}-1}{\sqrt{x}+3}\)
\(\Leftrightarrow x-1=x+\sqrt{x}-6\)
\(\Leftrightarrow\sqrt{x}-6=-1\)
\(\Leftrightarrow\sqrt{x}=5\)
hay x=25(nhận)
GIẢI PT
\(\sqrt{x^2+10x+25}=4\)
\(\sqrt{x-2}+3=5\)
\(\sqrt{x^2-x+4}-x^2+x-2=0\)
\(\dfrac{\sqrt{x}-1}{\sqrt{x}+2}=\dfrac{1}{3}\)
1) \(\Leftrightarrow\sqrt{\left(x+5\right)^2}=4\)
\(\Leftrightarrow\left|x+5\right|=4\)
\(\Leftrightarrow\left[{}\begin{matrix}x+5=4\\x+5=-4\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-9\end{matrix}\right.\)
2) \(ĐK:x\ge2\)
\(\Leftrightarrow\sqrt{x-2}=2\)
\(\Leftrightarrow x-2=4\Leftrightarrow x=6\left(tm\right)\)
3) \(\Leftrightarrow\left(x^2-x+4\right)-\sqrt{x^2-x+4}+\dfrac{1}{4}=\dfrac{9}{4}\)
\(\Leftrightarrow\left(\sqrt{x^2-x+4}-\dfrac{1}{2}\right)^2=\dfrac{9}{4}\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2-x+4}-\dfrac{1}{2}=\dfrac{3}{2}\\\sqrt{x^2-x+4}-\dfrac{1}{2}=-\dfrac{3}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2-x+4}=2\\\sqrt{x^2-x+4}=-1\left(VLý\right)\end{matrix}\right.\)
\(\Leftrightarrow x^2-x+4=4\Leftrightarrow x\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
4) \(ĐK:x\ge0\)
\(\Leftrightarrow3\sqrt{x}-3=\sqrt{x}+2\)
\(\Leftrightarrow\sqrt{x}=\dfrac{5}{2}\Leftrightarrow x=\dfrac{25}{4}\left(tm\right)\)
giải pt :
a, \(\sqrt[3]{2-x}=1-\sqrt{x-1}\)
b, \(2\sqrt[3]{3x-2}+3\sqrt{6-5x}-8=0\)
c, \(\left(x+3\right)\sqrt{-x^2-8x+48}=x-24\)
d, \(\sqrt[3]{\left(2-x\right)^2}+\sqrt[3]{\left(7+x\right)\left(2-x\right)}=3\)
e, \(\dfrac{\sqrt[3]{7-x}-\sqrt[3]{x-5}}{\sqrt[3]{7-x}+\sqrt[3]{x-5}}=6-x\)
giải pt
a) \(\frac{\sqrt{x^3+1}}{x+3}+\sqrt{x+1}=\sqrt{x^2-x+1}+\sqrt{x+3}\)
b) \(\sqrt[3]{2x+1}+\sqrt[3]{2x+2}+\sqrt[3]{2x+3}=0\)
giải pt :
a, \(4x^2-6x+1+\dfrac{1}{\sqrt{3}}\sqrt{16x^4+4x^2+1}=0\)
b, \(x^2-3x+1+\dfrac{1}{\sqrt{3}}\sqrt{x^4+x^2+1}=0\)
a.
\(\Leftrightarrow4x^2-6x+1+\dfrac{1}{\sqrt{3}}\sqrt{\left(4x^2-2x+1\right)\left(4x^2+2x+1\right)}\)
Đặt \(\left\{{}\begin{matrix}\sqrt{4x^2-2x+1}=a>0\\\sqrt{4x^2+2x+1}=b>0\end{matrix}\right.\) ta được:
\(2a^2-b^2+\dfrac{1}{\sqrt{3}}ab=0\)
\(\Leftrightarrow\left(a-\dfrac{b}{\sqrt{3}}\right)\left(2a+\sqrt{3}b\right)=0\)
\(\Leftrightarrow a=\dfrac{b}{\sqrt{3}}\)
\(\Leftrightarrow3a^2=b^2\)
\(\Leftrightarrow3\left(4x^2-2x+1\right)=4x^2+2x+1\)
\(\Leftrightarrow...\)
b.
\(x^2-3x+1+\dfrac{1}{\sqrt{3}}\sqrt{\left(x^2-x+1\right)\left(x^2+x+1\right)}\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x^2-x+1}=a>0\\\sqrt{x^2+x+1}=b>0\end{matrix}\right.\)
\(\Rightarrow2a^2-b^2+\dfrac{1}{\sqrt{3}}ab=0\)
Lặp lại cách làm câu a
Giải pt
\(5\sqrt[3]{x+1}+1\sqrt{x+2}+5\sqrt[3]{x+3}=0\)
1. Giải pt:
\(\sqrt{x^2-4x+1}-\sqrt{x+1}=0\)
2. Giải pt:
\(\sqrt{x^2-4x+3}+\sqrt{x-1}=0\)
a) Đk: \(\hept{\begin{cases}x^2-4x+1\ge0\\x+1\ge0\end{cases}}\)
\(\sqrt{x^2-4x+1}=\sqrt{x+1}\)
\(\Leftrightarrow x^2-4x+1=x+1\)
\(\Leftrightarrow x^2-4x-x=0\)
\(\Leftrightarrow x^2-5x=0\)
\(\Leftrightarrow x\left(x-5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=5\end{cases}}\)thỏa mãn điều kiện
Vậy x=0 hoặc x=5
2)\(\sqrt{\left(x-1\right)\left(x-3\right)}+\sqrt{x-1}=0\)(1)
Đk: x>=3 hoặc x=1
pt (1)<=> \(\sqrt{x-1}\left(\sqrt{x-3}+1\right)=0\)
<=> \(\sqrt{x-1}=0\)(vì\(\sqrt{x-3}+1>0\)mọi x )
<=> x-1=0
<=> x=1 ( thỏa mãn điều kiện)
Giải PT: \(\sqrt{x+5}+\sqrt{3-x}-2.\left(\sqrt{15-2x-x^2}+1\right)=0\)
https://hoc24.vn/images/discuss/1634131803_6166df5b69fd4.jpg
1. Giải pt:
\(\sqrt{x^2-4x+3}+\sqrt{x-1}=0\)0
2. Giải pt:
\(\sqrt{x^2-2x+1}-\sqrt{x^2-6x+9}=10\)
\(1)\) ĐKXĐ : \(x\ge3\)
\(\sqrt{x^2-4x+3}+\sqrt{x-1}=0\)
\(\Leftrightarrow\)\(\sqrt{\left(x^2-4x+4\right)-1}+\sqrt{x-1}=0\)
\(\Leftrightarrow\)\(\sqrt{\left(x-2\right)^2-1}+\sqrt{x-1}=0\)
\(\Leftrightarrow\)\(\sqrt{\left(x-2-1\right)\left(x-2+1\right)}+\sqrt{x-1}=0\)
\(\Leftrightarrow\)\(\sqrt{\left(x-3\right)\left(x-1\right)}+\sqrt{x-1}=0\)
\(\Leftrightarrow\)\(\sqrt{x-1}\left(\sqrt{x-3}+1\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}\sqrt{x-1}=0\\\sqrt{x-3}+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x\in\left\{\varnothing\right\}\end{cases}}}\)
Vậy \(x=1\)
\(2)\)\(\sqrt{x^2-2x+1}-\sqrt{x^2-6x+9}=10\)
\(\Leftrightarrow\)\(\sqrt{\left(x-1\right)^2}-\sqrt{\left(x-3\right)^2}=10\)
\(\Leftrightarrow\)\(\left|x-1\right|-\left|x-3\right|=10\)
+) Với \(\hept{\begin{cases}x-1\ge0\\x-3\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge1\\x\ge3\end{cases}\Leftrightarrow}x\ge3}\) ta có :
\(x-1-x+3=10\)
\(\Leftrightarrow\)\(0=8\) ( loại )
+) Với \(\hept{\begin{cases}x-1< 0\\x-3< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x< 1\\x< 3\end{cases}\Leftrightarrow}x< 1}\) ta có :
\(1-x+x-3=10\)
\(\Leftrightarrow\)\(0=12\) ( loại )
Vậy không có x thỏa mãn đề bài
Chúc bạn học tốt ~
PS : mới lp 8 sai đừng chửi nhé :v
Giải các PT sau :
1, \(x^2+x+3-3\sqrt{x^2+x+1}=0\)
2, \(\sqrt{x+5}-\sqrt{x}=\sqrt{x-3}\)
1/ Đặt \(\sqrt{x^2+x+1}=a>0\)
\(\Rightarrow a^2+2-3a=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=1\\a=2\end{cases}}\)
2/ \(\sqrt{x+5}-\sqrt{x}=\sqrt{x-3}\)
\(\Leftrightarrow\sqrt{x+5}=\sqrt{x}+\sqrt{x-3}\)
\(\Leftrightarrow8-x=2\sqrt{x\left(x-3\right)}\)
\(\Leftrightarrow-3x^2-4x+64=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{16}{3}\\x=4\end{cases}}\)
PS: Điều kiện b tự làm rồi tự chọn nghiệm nhé
MÌnh đang học lớp 8 nên chỉ giải được câu 1 thôi :(
1) \(x^2+x+1-3\sqrt{x^2+x+1}+2.25-0.25=0\)
\(\left(x^2+x+1-1.5\right)^2=0.25\)
\(=>\left(x^2+x-1.5\right)^2=0.5^2\)
=> \(x^2+x-1.5=0.5\) \(x^2+x-1.5=-0.5\)
\(x^2+x-2=0\) \(x^2+x-1=0\\ x^2+x+\frac{1}{4}=\frac{5}{4}\)
\(x^2+x+\frac{1}{4}=\frac{9}{4}\\ \left(x+\frac{1}{2}\right)^2=\frac{9}{4}\) Đến đây bạn tự làm nốt nhé mình lười quá Sorry