Cho a+b+c=3.CMR:
\(\sqrt{4a+1}+\sqrt{4b+1}+\sqrt{4c+1}\le3\sqrt{5}\)
Cho a, b, c \(\ge\dfrac{-3}{4}\) và a + b + c + d = 3. CMR: \(\sqrt{4a+3}+\sqrt{4b+3}+\sqrt{4c+3}\le3\sqrt{7}\)
Đặt \(A=\sqrt{4a+3}+\sqrt{4b+3}+\sqrt{4c+3}\Rightarrow A^2=\left(\sqrt{4a+3}+\sqrt{4b+3}+\sqrt{4c+3}\right)^2\)
Áp dụng BĐT Bu - nhi - a - cốp - xki ta có :
\(A^2=\left(\sqrt{4a+3}+\sqrt{4b+3}+\sqrt{4c+3}\right)^2\le\left(1^2+1^2+1^2\right)\left(4a+3+4b+3+4c+3\right)=3\left[4\left(a+b+c\right)+9\right]=3\left(12+9\right)=63\)
\(\Rightarrow A=\sqrt{4a+3}+\sqrt{4b+3}+\sqrt{4c+3}\le\sqrt{63}=3\sqrt{7}\)
Dấu \("="\) xảy ra khi \(a=b=c=1\)
cho a+b+c=1 và \(a,b,c\ge-\frac{1}{4}\) CMR \(\sqrt{4a+1}+\sqrt{4b+1}\sqrt{4c+1}< 5\)
Áp dụng Cauchy-Schwarz:
\(VT^2\le\left(1+1+1\right)\left(4a+1+4b+1+4c+1\right)\)
\(=3\left(4\left(a+b+c\right)+3\right)\)
\(=3\left(4+3\right)=21< 25=VP^2\)
Suy ra VT<VP---> đúng
Cho a, b, c>0 và a+b+c = 1. CMR: \(\sqrt{4a+1}+\sqrt{4b+1}+\sqrt{4c+1}\)\(\le\sqrt{21}\)
Ap dung BDT Bun-hia-cop-xki ta co
\(\sqrt{4a+1}+\sqrt{4b+1}+\sqrt{4c+1}\le\sqrt{1+1+1}.\sqrt{4\left(a+b+c\right)+3}=\sqrt{3.7}=\sqrt{21}\)
Dau '=' xay ra khi \(a=b=c=\frac{1}{3}\)
Cho \(a;b;c\ge-\frac{3}{4}\)và \(a+b+c=3\)
CMR
\(\sqrt{4a+3}+\sqrt{4b+3}+\sqrt{4c+3}\le3\sqrt{7}\)
Áp dụng BĐT Bunhiacopxki
\(\left(\sqrt{4a+3}+\sqrt{4b+3}+\sqrt{4c+3}\right)^2\le\left(1+1+1\right)\left(4a+4b+4c+9\right)=63\)
\(\Rightarrow\sqrt{4a+3}+\sqrt{4b+3}+\sqrt{4c+3}\le3\sqrt{7}\)
Dấu "=" xảy ra <=> a=b=c=1
C2 : Áp dụng BĐT cô si cũng đc nhưng mà hơi dài dài tí
Cho a,b,c > \(\dfrac{-1}{4}\). Chứng minh rằng
\(\sqrt{4a+1}+\sqrt{4b+1}+\sqrt{4c+1}\le\sqrt{21}\)
Đề bài thiếu, chắc chắn phải có thêm 1 dữ kiện khác
Ví dụ, bạn cho \(a=b=c=1000\) sẽ thấy BĐT sai
Cho a,b,c thực dương .CMR
\(\sqrt{\frac{\left(a+b\right)^3}{ab\left(4a+4b+c\right)}}+\sqrt{\frac{\left(b+c\right)^3}{bc\left(4b+4c+a\right)}}+\sqrt{\frac{\left(c+a\right)^3}{ca\left(4c+4c+b\right)}}\ge2\sqrt{2}\)
ĐÂY MÀ LÀ toán 5 ạ??
Gọi A là vế trái của BĐT cần chứng minh. Không mất tính tổng quát, ta giả sử a + b + c = 3. Áp dụng BĐT AM - GM ta có:
\(\sqrt{\frac{\left(a+b\right)^3}{8ab\left(4a+4b+c\right)}}+\sqrt{\frac{\left(a+b\right)^3}{8bc\left(4a+4b+c\right)}}+\frac{ab\left(4a+4b+c\right)}{27}\)\(\ge\frac{1}{2}\left(a+b\right)\)
Suy ra
\(\sqrt{\frac{\left(a+b\right)^3}{8ab\left(4a+4b+c\right)}}\)\(+\frac{ab\left(4a+4b+c\right)}{54}\ge\frac{1}{4}\left(a+b\right)\)
Tương tự
\(\sqrt{\frac{\left(b+c\right)^3}{8bc\left(4b+4c+a\right)}}+\frac{bc\left(4b+4c+a\right)}{54}\ge\frac{1}{4}\left(b+c\right)\)
và \(\sqrt{\frac{\left(c+a\right)^3}{8ca\left(4c+4a+b\right)}}+\frac{ca\left(4c+4a+b\right)}{54}\ge\frac{1}{4}\left(c+a\right)\)
Cộng ba BĐT trên ta có:
\(\frac{1}{2\sqrt{2}}A\ge B\)
Với \(A=\frac{1}{54}[ab\left(4a+4b+c\right)+bc\left(4b+4c+a\right)\)
\(+ca\left(4c+4a+b\right)]\)
\(=\frac{1}{54}\left[4ab\left(a+b\right)+4bc\left(b+c\right)+4ca\left(c+a\right)+3abc\right]\)
\(=\frac{1}{54}\left[4\left(a+b+c\right)\left(ab+bc+ca\right)-9abc\right]\)
\(\le\frac{1}{54}\left(a+b+c\right)^3=\frac{1}{2}\)
và \(B=\frac{1}{4}.2\left(a+b+c\right)=\frac{3}{2}\)
Suy ra \(\frac{1}{2\sqrt{2}}A\ge\frac{3}{2}-\frac{1}{2}=1\Rightarrow A\ge2\sqrt{2}\)
Vậy
\(\sqrt{\frac{\left(a+b\right)^3}{ab\left(4a+4b+c\right)}}+\sqrt{\frac{\left(a+b\right)^3}{bc\left(4a+4b+c\right)}}+\sqrt{\frac{\left(c+a\right)^3}{ca\left(4c+4a+b\right)}}\ge2\sqrt{2}\)(đpcm)
toán lớp 5 phiên bản hack não
Giúp mình mấy câu này với nhé các ban.
1) Cho a,b,c>0 cmr:\(\frac{a}{\sqrt{a^2+b^2}}+\frac{b}{\sqrt{b^2+c^2}}+\frac{c}{\sqrt{c^2+a^2}}\le\frac{3}{\sqrt{2}}\)
2)Cho a,b,c>0 và abc=1. Cmr:\(\sqrt{\frac{a}{4a+4b+1}}+\sqrt{\frac{b}{4b+4c+1}}+\sqrt{\frac{c}{4c+4a+1}}\le1\)
3)Cho a,b,c>0 tm a+b+c=3 Cmr \(\frac{1}{2+a^2+b^2}+\frac{1}{2+b^2+c^2}+\frac{1}{2+c^2+a^2}\le\frac{3}{4}\)
Mình cảm ơn các bạn nhiều
Bài 1:
Đặt \(a^2=x;b^2=y;c^2=z\)
Ta có:\(\sqrt{\frac{x}{x+y}}+\sqrt{\frac{y}{y+z}}+\sqrt{\frac{z}{z+x}}\le\frac{3}{\sqrt{2}}\)
Áp dụng BĐT cô si ta có:
\(\sqrt{\frac{x}{x+y}}=\frac{1}{\sqrt{2}}\sqrt{\frac{4x\left(x+y+z\right)}{3\left(x+y\right)\left(x+z\right)}\frac{3\left(x+z\right)}{2\left(x+y+z\right)}}\)
\(\le\frac{1}{2\sqrt{2}}\left[\frac{4x\left(x+y+z\right)}{3\left(x+y\right)\left(x+z\right)}+\frac{3\left(x+z\right)}{2\left(x+y+z\right)}\right]\)
Tương tự với \(\sqrt{\frac{y}{y+z}}\)và \(\sqrt{\frac{z}{z+x}}\)
Cộng lại ta được:
\(\frac{\sqrt{2}}{3}\left[\frac{x\left(x+y+z\right)}{\left(x+y\right)\left(x+z\right)}+\frac{y\left(x+y+z\right)}{\left(y+z\right)\left(y+x\right)}+\frac{z\left(x+y+z\right)}{\left(z+x\right)\left(z+y\right)}\right]+\frac{3}{2\sqrt{2}}\le\frac{3}{2\sqrt{2}}\)
Sau đó bình phương hai vế rồi
\(\Rightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge8xyz\)đẳng thức đúng
Vậy...
Bài 2:
Trước hết ta chứng minh bất đẳng thức sau:
\(\frac{a}{4a+4b+c}+\frac{b}{4b+4c+a}+\frac{c}{4c+4a+b}\le\frac{1}{3}\)
Nhân cả hai vế bđt với 4(a+b+c)4(a+b+c) rồi thu gọn ta được bđt sau:
\(\frac{4a\left(a+b+c\right)}{4a+4b+c}+\frac{4b\left(a+b+c\right)}{4b+4c+a}+\frac{4c\left(a+b+c\right)}{4c+4a+b}\)\(\le\frac{4}{3}\left(a+b+c\right)\)
\(\left[\frac{4a\left(a+b+c\right)}{4a+4b+}-a\right]+\left[\frac{4b\left(a+b+c\right)}{4b+4c+a}-b\right]+\left[\frac{4c\left(a+b+c\right)}{4c+4a+b}-c\right]\le\frac{a+b+c}{3}\)
\(\frac{ca}{4a+4b+c}+\frac{ab}{4b+4c+a}+\frac{bc}{4c+4a+b}\le\frac{a+b+c}{9}\)
Áp dụng bđt cauchy-Schwarz ta có \(\frac{ca}{4a+4b+c}=\frac{ca}{\left(2b+c\right)+2\left(2a+b\right)}\)\(\le\frac{ca}{9}\left(\frac{1}{2b+c}+\frac{2}{2a+b}\right)\)
Từ đó ta có:
\(\text{∑}\frac{ca}{4a+4b+c}\le\frac{1}{9}\text{∑}\left(\frac{ca}{2b+c}+\frac{2ca}{2a+b}\right)\)\(=\frac{1}{9}\left(\text{ ∑}\frac{ca}{2b+c}+\text{ ∑}\frac{2ca}{2a+b}\right)\)\(=\frac{1}{9}\left(\text{ ∑}\frac{ca}{2b+c}+\text{ ∑}\frac{2ab}{2b+c}\right)=\frac{a+b+c}{9}\)
Đặt VT=A rồi áp dụng bđt cauchy-Schwarz cho VT ta có
\(T^2\le3\left(\frac{a}{4a+4b+c}+\frac{b}{4b+4c+a}+\frac{c}{4c+4a+b}\right)\)\(\le3\cdot\frac{1}{3}=1\Leftrightarrow T\le1\)
Dấu = xảy ra khi a=b=c
c bạn tự làm nhé mình mệt rồi :D
Cho 3 so duong a,b,c thoa man dieu kien : a+b+c=1. Chung minh rang
\(\sqrt{4a+1}+\sqrt{4b+1}+\sqrt{4c+1}< 5\)
Áp dụng BĐT Bunhia:
\(\sqrt{4a+1}+\sqrt{4b+1}+\sqrt{4c+1}\le\sqrt{\left(1+1+1\right)\left(4a+1+4b+1+4c+1\right)}\)
\(\Rightarrow\sqrt{4a+1}+\sqrt{4b+1}+\sqrt{4c+1}\le\sqrt{3.\left(4\left(a+b+c\right)+3\right)}=\sqrt{21}< \sqrt{25}=5\)
Vậy \(\sqrt{4a+1}+\sqrt{4b+1}+\sqrt{4c+1}< 5\)
Cho a, b, c > 0 ; a + b + c = 1
CM: \(\sqrt{4a+1}+\sqrt{4b+1}+\sqrt{4c+1}< 5\)
áp dụng bất đẳng thức: (a+b+c)^2<=3(a^2+b^2+c^2):
[√(4a+1)+√(4b+1)+√(4c+1)]^2
<= 3[4(a+b+c)+3]=21<25
=>√(4a+1)+√(4b+1)+√(4c+1)<5
cosi : \(\sqrt{4a+1}\)\(\sqrt{1}\)<\(\frac{4a+1+1}{2}\)= 2a + 1. tương tự \(\sqrt{4b+1}\)\(\sqrt{1}\)<\(\frac{4b+1+1}{2}\)= 2b + 1; \(\sqrt{4c+1}\)\(\sqrt{1}\)<\(\frac{4c+1+1}{2}\)= 2c + 1. Nên VT < 2(a+b+c) +3 = 5. Dấu = xảy ra khi và chỉ khi a=b=c = 1/3