Áp dụng BĐT Bunhiacopxki:
\(\sqrt{4a+1}+\sqrt{4b+1}+\sqrt{4c+1}\le\sqrt{\left(1+1+1\right)\left(4a+1+4b+1+4c+1\right)}\) \(=\sqrt{3.\left(4.3+3\right)}=\sqrt{3.15}=3\sqrt{5}\)
\(\text{Dấu ''='' xảy ra }\Leftrightarrow a=b=c=1\)
Áp dụng BĐT Bunhiacopxki:
\(\sqrt{4a+1}+\sqrt{4b+1}+\sqrt{4c+1}\le\sqrt{\left(1+1+1\right)\left(4a+1+4b+1+4c+1\right)}\) \(=\sqrt{3.\left(4.3+3\right)}=\sqrt{3.15}=3\sqrt{5}\)
\(\text{Dấu ''='' xảy ra }\Leftrightarrow a=b=c=1\)
Cho a,b,c > \(\dfrac{-1}{4}\). Chứng minh rằng
\(\sqrt{4a+1}+\sqrt{4b+1}+\sqrt{4c+1}\le\sqrt{21}\)
Bài 1. Cho a, b, c \(\ge\) 0 và \(a+b+c=3\). Chứng minh:
a, \(a^3+b^3+c^3\ge3\)
b, \(\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}\le3\)
c, \(a^9+b^9+c^9\ge a^3+b^3+c^3\)
d, \(\sqrt[5]{a}+\sqrt[5]{b}+\sqrt[5]{c}\le3\)
Bất đẳng thức Bunhiacopxki
B1: Cho a,b,c thỏa mãn: a+b+c=1. CMR: \(a^2+b^2+c^2\ge\dfrac{1}{3}\)
B2: Cho a,b,c dương thỏa mãn: \(a^2+4b^2+9c^2=2015\). CMR: \(a+b+c\le\dfrac{\sqrt{14}}{6}\)
B3: Cho a,b dương thỏa mãn: \(a^2+b^2=1\).CMR: \(a\sqrt{1+a}+b\sqrt{1+b}\le\sqrt{2+\sqrt{2}}\)
Cho a,b,c là số dương thỏa mãn a+b+c=3. CMR
a/ \(\dfrac{a}{\sqrt{b+1}}+\dfrac{b}{\sqrt{c+1}}+\dfrac{c}{\sqrt{a+1}}\ge\dfrac{3\sqrt{2}}{2}\)
b/ \(\sqrt{\dfrac{a^3}{b+3}}+\sqrt{\dfrac{b^3}{c+3}}+\sqrt{\dfrac{c^3}{a+3}}\ge\dfrac{3}{2}\)
Cho a, b, c là các số thực dương thỏa mãn \(\sqrt{a}+\sqrt{b}+\sqrt{c}=1\) . Cmr
\(\sqrt{\dfrac{ab}{a+b+2c}}+\sqrt{\dfrac{bc}{c+b+2a}}+\sqrt{\dfrac{ca}{a+c+2b}}\le\dfrac{1}{2}\)
cho a,b,c không âm thỏa mãn a+b+c=3. Cmr:
\(a\sqrt{b^3+1}+b\sqrt{c^3+1}+c\sqrt{a^3+1}\le5\)
cho a,b,c>0 thỏa mãn abc=8. Cmr:
\(\frac{1}{\sqrt{1+a^3}}+\frac{1}{\sqrt{1+b^3}}+\frac{1}{\sqrt{1+c^3}}\ge1\)
a) Giải phương trình: \(\sqrt{5x^2+14x+9}-\sqrt{x^2-x-20}=5\sqrt{x+1}\)
b) Cho \(0< x< y\le3\) và \(2xy\le3x+y\forall x,y\in R\). Chứng minh rằng: \(x^2+y^2\le10\)
cho a, b, c > 0 thỏa mãn abc = 1. Cmr: \(\frac{1}{\sqrt{a^5-a^2+3ab+6}}+\frac{1}{\sqrt{b^5-b^2+3bc}+6}+\frac{1}{\sqrt{c^5-c^2+3ca+6}}\le1\)