Những câu hỏi liên quan
H24
Xem chi tiết
VC
Xem chi tiết
NH
Xem chi tiết
PN
19 tháng 12 2020 lúc 20:24

A= -x2+2x+3

=>A= -(x2-2x+3)

=>A= -(x2-2.x.1+1+3-1)

=>A=-[(x-1)2+2]

=>A= -(x+1)2-2

Vì -(x+1)≤0=> A≤-2

Dấu "=" xảy ra khi

-(x+1)2=0 => x=-1

Vây A lớn nhất= -2 khi x= -1

Bình luận (0)
PN
19 tháng 12 2020 lúc 20:26

B=x2-2x+4y2-4y+8

=> B= (x2-2x+1)+(4y2-4y+1)+6

=> B=(x-1)2+(2y+1)2+6

=> B lớn nhất=6 khi x=1 và y=-1/2

Bình luận (0)
8N
Xem chi tiết
H24
5 tháng 3 2022 lúc 9:18

a, xem lại đề 

\(b,x^2-4x+y^2-6y+1\\ =\left(x^2-4x+4\right)+\left(y^2-6y+9\right)-12\\ =\left(x-2\right)^2+\left(y-3\right)^2-12\ge-12\)

Dấu "=" xảy ra\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=3\end{matrix}\right.\)

Vậy ...

\(c,x^2-4xy+5y^2-2y+5\\ =\left(x^2-4xy+4y^2\right)+\left(y^2-2y+1\right)+4\\ =\left(x-2y\right)^2+\left(y-1\right)^2+4\ge4\)

Dấu "=" xảy ra\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)

Vậy ...

Bình luận (1)

a, 

b,x2−4x+y2−6y+1=(x2−4x+4)+(y2−6y+9)−12=(x−2)2+(y−3)2−12≥−12b,x2−4x+y2−6y+1=(x2−4x+4)+(y2−6y+9)−12=(x−2)2+(y−3)2−12≥−12

Dấu "=" xảy ra⇔{x=2y=3⇔{x=2y=3

Vậy ...

c,x2−4xy+5y2−2y+5=(x2−4xy+4y2)+(y2−2y+1)+4=(x−2y)2+(y−1)2+4≥4c,x2−4xy+5y2−2y+5=(x2−4xy+4y2)+(y2−2y+1)+4=(x−2y)2+(y−1)2+4≥4

Dấu "=" xảy ra⇔{x=2y=1⇔{x=2y=1

Vậy ...

Bình luận (0)
 ILoveMath đã xóa
NA
Xem chi tiết
PQ
Xem chi tiết
NN
Xem chi tiết
VL
Xem chi tiết
H24
14 tháng 6 2018 lúc 10:57

Đặt \(A=-2x^2-y^2-2xy+4x+2y+2\)

\(-A=2x^2+y^2+2xy-3x-2y-2\)

\(-A=\left(x^2+2xy+y^2\right)+x^2-4x-2y-2\)

\(-A=\left[\left(x+y\right)^2-2\left(x+y\right)+1\right]+\left(x^2-2x+1\right)-4\)

\(-A=\left(x+y-1\right)^2+\left(x-1\right)^2-4\)

Mà  \(\left(x+y-1\right)^2\ge0\forall x;y\)

       \(\left(x-1\right)^2\ge0\forall x\)

\(\Rightarrow-A\ge-4\)

\(\Leftrightarrow A\le4\)

Dấu "=" xảy ra khi :

\(\hept{\begin{cases}x+y-1=0\\x-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=0\\x=1\end{cases}}\)

Vậy  \(A_{Max}=4\Leftrightarrow\left(x;y\right)=\left(1;0\right)\)

Bình luận (0)
H24
14 tháng 6 2018 lúc 11:03

Đặt  \(B=x^2-4xy+5y^2+10x-22y+27\)

\(B=\left(x^2-4xy+4y^2\right)+y^2+10x-22y+27\)

\(B=\left[\left(x-2y\right)^2+2\left(x-2y\right)\times5+25\right]+\)\(\left(y^2-2y+1\right)+1\)

\(B=\left(x-2y+5\right)^2+\left(y-1\right)^2+1\)

Mà  \(\left(x-2y+5\right)^2\ge0\forall x;y\)

       \(\left(y-1\right)^2\ge0\forall y\)

\(\Rightarrow B\ge1\)

Dấu "=" xảy ra khi :

\(\hept{\begin{cases}x-2y+5=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}\)

Vậy  \(B_{Min}=1\Leftrightarrow\left(x;y\right)=\left(-3;1\right)\)

Bình luận (0)
BN
Xem chi tiết
BH
12 tháng 12 2017 lúc 15:55

P=4x2+4xy+y2+x2-4x+4+y2+8y+16+5

=> P=(2x+y)2+ (x-2)2 + (y+4)2 +5

Ta nhận thấy: \(\hept{\begin{cases}\left(2x+y\right)^2\ge0\forall x,y\\\left(x-2\right)^2\ge0\forall x\\\left(y+4\right)^2\ge0\forall y\end{cases}}\)

=> P=(2x+y)2+ (x-2)2 + (y+4)2 +5 \(\ge\)5  Với mọi x, y

=> GTNN của P là Pmin = 5

Đạt được khi: 

\(\hept{\begin{cases}\left(2x+y\right)^2=0\\\left(x-2\right)^2=0\\\left(y+4\right)^2=0\end{cases}}\) <=> \(\hept{\begin{cases}2x+y=0\\x-2=0\\y+4=0\end{cases}}\) <=> \(\hept{\begin{cases}x=2&y=-4&\end{cases}}\)

Bình luận (0)