Những câu hỏi liên quan
H24
Xem chi tiết
HV
5 tháng 10 2021 lúc 18:28

A= (2+22)+(23+24)+...+(259+260)
A=2.(1+2)+23.(1+2)+...+259.(1+2)
A=2.3+23.3+...+259.3
A=3.(2+23+...+259)
Vì 3 chia hết cho 3 => 3.(2+23+...+259)  chia hết cho 3
=>A  chia hết cho 3
A= (2+22+23)+...+(258+259+260)
A=2.(1+2+22)+...+258.(1+2+22)
A=2.7+...+258.7
A=7.(2+...+258)
Vì 7  chia hết cho 7 =>7.(2+...+258)  chia hết cho 7

CHIA HẾT CHO 3 :

A= (2+22)+(23+24)+...+(259+260)

A=2.(1+2)+23.(1+2)+...+259.(1+2)

A=2.3+23.3+...+259.3

A=3.(2+23+...+259)

Vì 3 chia hết cho 3 => 3.(2+23+...+259) chia hết cho 3

=>A chia hết cho 3


 

Bình luận (0)
 Khách vãng lai đã xóa
YH
4 tháng 11 2021 lúc 18:41

dcv

Bình luận (0)
NT
Xem chi tiết
H24
Xem chi tiết
NT
7 tháng 1 2021 lúc 12:47

Ta có: \(A=2+2^2+2^3+2^4+...+2^{99}+91\)

\(=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{97}+2^{98}+2^{99}\right)+91\)

\(=2\cdot\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{97}\left(1+2+2^2\right)+91\)

\(=7\cdot\left(1+2^4+...+2^{97}\right)+7\cdot13\)

\(=7\cdot\left(1+2^4+...+2^{97}+13\right)⋮7\)(đpcm)

Bình luận (0)
PD
Xem chi tiết
NT
7 tháng 1 2021 lúc 12:44

Ta có: \(A=2+2^2+2^3+2^4+...+2^{99}\)

\(=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{97}+2^{98}+2^{99}\right)\)

\(=2\cdot\left(1+2+2^2\right)+2^4\cdot\left(1+2+2^2\right)+...+2^{97}\left(1+2+2^2\right)\)

\(=\left(1+2+2^2\right)\cdot\left(2+2^4+...+2^{97}\right)\)

\(=7\cdot\left(2+2^4+...+2^{97}\right)⋮7\)(đpcm)

Bình luận (0)
PT
Xem chi tiết
NT
16 tháng 10 2023 lúc 20:23

a: \(A=1+2+2^2+...+2^{41}\)

=>\(2A=2+2^2+2^3+...+2^{42}\)

=>\(2A-A=2^{42}-1\)

=>\(A=2^{42}-1\)

b: \(A=\left(1+2\right)+2^2\left(1+2\right)+...+2^{40}\left(1+2\right)\)

\(=3\left(1+2^2+...+2^{40}\right)⋮3\)

\(A=\left(1+2+2^2\right)+2^3\left(1+2+2^2\right)+...+2^{39}\left(1+2+2^2\right)\)

\(=7\left(1+2^3+...+2^{39}\right)⋮7\)

Bình luận (0)
PC
Xem chi tiết
XO
18 tháng 11 2019 lúc 20:45

A = 2 + 22 + 23 + 24 + 25..... + 223 + 224

=  (2 + 22 + 23) + (23 + 24 + 25) + ..... + (222 + 223 + 224)

=  (2 + 22 + 23) + 22 (2 + 2+ 23) + .... + 222. (2 + 22 + 23)

= 14 + 22.14 + .... + 222.14

= 14.(1 + 22 + ... + 222)

= 2.7.(1 + 22 + ... + 222\(⋮\) 7

\(\Rightarrow A⋮7\)(ĐPCM)

Bình luận (0)
 Khách vãng lai đã xóa
DA
Xem chi tiết
KL
22 tháng 10 2023 lúc 12:13

a) P = 1 + 3 + 3² + ... + 3¹⁰¹

= (1 + 3 + 3²) + (3³ + 3⁴ + 3⁵) + ... + (3⁹⁹ + 3¹⁰⁰ + 3¹⁰¹)

= 13 + 3³.(1 + 3 + 3²) + ... + 3⁹⁹.(1 + 3 + 3²)

= 13 + 3³.13 + ... + 3⁹⁹.13

= 13.(1 + 3³ + ... + 3⁹⁹) ⋮ 13

Vậy P ⋮ 13

b) B = 1 + 2² + 2⁴ + ... + 2²⁰²⁰

= (1 + 2² + 2⁴) + (2⁶ + 2⁸ + 2¹⁰) + ... + (2²⁰¹⁶ + 2²⁰¹⁸ + 2²⁰²⁰)

= 21 + 2⁶.(1 + 2² + 2⁴) + ... + 2²⁰¹⁶.(1 + 2² + 2⁴)

= 21 + 2⁶.21 + ... + 2²⁰¹⁶.21

= 21.(1 + 2⁶ + ... + 2²⁰¹⁶) ⋮ 21

Vậy B ⋮ 21

c) A = 2 + 2² + 2³ + ... + 2²⁰

= (2 + 2² + 2³ + 2⁴) + (2⁵ + 2⁶ + 2⁷ + 2⁸) + ... + (2¹⁷ + 2¹⁸ + 2¹⁹ + 2²⁰)

= 30 + 2⁴.(2 + 2² + 2³ + 2⁴) + ... + 2¹⁶.(2 + 2² + 2³ + 2⁴)

= 30 + 2⁴.30 + ... + 2¹⁶.30

= 30.(1 + 2⁴ + ... + 2¹⁶)

= 5.6.(1 + 2⁴ + ... + 2¹⁶) ⋮ 5

Vậy A ⋮ 5

d) A = 1 + 4 + 4² + ... + 4⁹⁸

= (1 + 4 + 4²) + (4³ + 4⁴ + 4⁵) + ... + (4⁹⁷ + 4⁹⁸ + 4⁹⁹)

= 21 + 4³.(1 + 4 + 4²) + ... + 4⁹⁷.(1 + 4 + 4²)

= 21 + 4³.21 + ... + 4⁹⁷.21

= 21.(1 + 4³ + ... + 4⁹⁷) ⋮ 21

Vậy A ⋮ 21

e) A = 11⁹ + 11⁸ + 11⁷ + ... + 11 + 1

= (11⁹ + 11⁸ + 11⁷ + 11⁶ + 11⁵) + (11⁴ + 11³ + 11² + 11 + 1)

= 11⁵.(11⁴ + 11³ + 11² + 11 + 1) + 16105

= 11⁵.16105 + 16105

= 16105.(11⁵ + 1)

= 5.3221.(11⁵ + 1) ⋮ 5

Vậy A ⋮ 5

Bình luận (0)
NT
Xem chi tiết
KL
11 tháng 12 2023 lúc 18:14

Số số hạng của A:

90 - 1 + 1 = 90 (số)

Do 90 chia hết cho 3 nên có thể nhóm thành nhóm 3 số hạng

Ta có:

A = 2¹ + 2² + 2³ + ... + 2⁹⁰

= (2 + 2² + 2³) + (2⁴ + 2⁵ + 2⁶) + ... + (2⁸⁸ + 2⁸⁹ + 2⁹⁰)

= 2.(1 + 2 + 2²) + 2⁴.(1 + 2 + 2²) + ... + 2⁸⁸.(1 + 2 + 2²)

= 2.7 + 2⁴.7 + ... + 2⁸⁸.7

= 7.(2 + 2⁴ + ... + 2⁸⁸) ⋮ 7

Vậy A ⋮ 7

b) A = 2¹ + 2² + 2³ + ... + 2⁹⁰

⇒ 2A = 2² + 2³ + 2⁴ + ... + 2⁹¹

⇒ A = 2A - A = (2² + 2³ + 2⁴ + ... + 2⁹¹) - (2 + 2² + 2³ + ... + 2⁹⁰)

= 2⁹¹ - 2

Bình luận (0)
VH
Xem chi tiết
NT
27 tháng 8 2023 lúc 8:30

\(S=1+2+2^2+2^3+2^4+...+2^{2011}\)

\(\Rightarrow S=\left(1+2+2^2\right)+2^3\left(1+2+2^2\right)+...+2^{2009}\left(1+2+2^2\right)\)

\(\Rightarrow S=7+2^3.7+...+2^{2009}.7\)

\(\Rightarrow S=7\left(1+2^3+...+2^{2009}\right)⋮7\)

\(\Rightarrow dpcm\)

Bình luận (0)
NC
Xem chi tiết
OY
21 tháng 8 2021 lúc 8:23

b) A=2+22+23+...+220

A=(2+22)+(23+24)+...+(219+220)

A=3.2+3.23+...+3.219

A=3.(2+23+25+...+219)

⇒A⋮3

phần c) làm tương tự

Bình luận (5)