\(a,A=7^{15}+7^{16}+7^{17}\)
\(A=7^{15}\left(1+7+7^2\right)\)
\(A=7^{15}.57\)
Ta có :
\(A=7^{15}.57⋮57\)
\(\Rightarrow A⋮57\)
\(b,B=2+2^2+2^3+....+2^{60}\)
\(B=\left(2+2^2+2^3\right)+...+\left(2^{58}+2^{59}+2^{60}\right)\)
\(B=2\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)
\(B=2.7+...+2^{58}.7\)
\(B=7\left(2+2^4+....+2^{58}\right)\)
Ta có :
\(B=7\left(2+2^4+....+2^{58}\right)⋮7\)
\(\Rightarrow B⋮7\)