Những câu hỏi liên quan
OO
Xem chi tiết
HQ
8 tháng 8 2017 lúc 16:01

Giải:

Từ \(\left\{{}\begin{matrix}b^2=ac\Rightarrow\dfrac{a}{b}=\dfrac{b}{c}\\c^2=bd\Rightarrow\dfrac{b}{c}=\dfrac{c}{d}\end{matrix}\right.\) \(\Rightarrow\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\)

Theo tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a+b-c}{b+c-d}\)

\(\Rightarrow\dfrac{a^3}{b^3}=\dfrac{b^3}{c^3}=\dfrac{c^3}{d^3}=\dfrac{\left(a+b-c\right)^3}{\left(b+c-d\right)^3}\left(1\right)\)

\(\dfrac{a^3}{b^3}=\dfrac{b^3}{c^3}=\dfrac{c^3}{d^3}=\dfrac{a^3+b^3-c^3}{b^3+c^3-d^3}\left(2\right)\)

Kết hợp \(\left(1\right)\)\(\left(2\right)\) suy ra:

\(\dfrac{a^3+b^3-c^3}{b^3+c^3-d^3}=\dfrac{\left(a+b-c\right)^3}{\left(b+c-d\right)^3}\) (Đpcm)

Bình luận (0)
DS
Xem chi tiết
HP
10 tháng 12 2017 lúc 10:20

Ko bt lm

Sang mà hỏi cô í

Bình luận (0)
HP
10 tháng 12 2017 lúc 19:10

Violympic toán 7Violympic toán 7

Tau đã nói là tau ko lừa mi nha!!!

Bình luận (0)
HL
9 tháng 8 2018 lúc 9:22

Ta có: b^2=ac suy ra a/b=b/c

c^2=bd suy ra b/c=c/d

suy ra: a/b=b/c=c/d

Vận dụng tính chất dãy tỉ số bằng nhau:

a/b=b/c=c/d=a+b-c/b+c-d

suy ra: a^3/b^3=b^3/c^3=c^3/d^3=(a+b-c)^3/(b+c-d)^3(dpcm)

Vậy.....................

Bình luận (0)
NH
Xem chi tiết
PT
Xem chi tiết
NA
Xem chi tiết
NA
11 tháng 12 2018 lúc 16:00

Ta có:

\(b^2=ac\Rightarrow\frac{a}{b}=\frac{b}{c}\)

\(c^2=bd\Rightarrow\frac{b}{c}=\frac{c}{d}\)

\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}\)

Bình luận (0)
NH
11 tháng 12 2018 lúc 16:07

Ta có : \(b^2=ac\) 

\(\Rightarrow\frac{a}{b}=\frac{b}{c}\) (1) 

\(c^2=bd\) 

\(\Rightarrow\frac{b}{c}=\frac{c}{d}\) (2)

Từ (1) và (2) suy ra : \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\) 

\(\Rightarrow\frac{a}{b}.\frac{a}{b}.\frac{a}{b}=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}\) , \(\frac{b}{c}.\frac{b}{c}.\frac{b}{c}=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}\) và \(\frac{c}{d}.\frac{c}{d}.\frac{c}{d}=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}\)

\(\Rightarrow\frac{a^3}{b^3}=\frac{a}{d}\) , \(\frac{b^3}{c^3}=\frac{a}{d}\) và \(\frac{c^3}{d^3}=\frac{a}{d}\) 

\(\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a}{d}\) 

\(\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a}{d}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\) 

Vậy \(\frac{a}{d}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)

Bình luận (0)
NA
11 tháng 12 2018 lúc 16:45

 Ta có:

\(b^2=ac\Rightarrow\frac{a}{b}=\frac{b}{c}\)

\(c^2=bd\Rightarrow\frac{b}{c}=\frac{c}{d}\)

\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}\)

\(ADTCDTSBN,\)ta có:

\(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\left(1\right)\)

Lại có:\(\frac{a^3}{b^3}=\frac{a}{b}.\frac{a}{b}.\frac{a}{b}=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a}{d}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\frac{a}{d}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\left(đpcm\right)\)

Bình luận (0)
NT
Xem chi tiết
H24
Xem chi tiết
H24
9 tháng 2 2020 lúc 10:51

\(a^2+ab+\frac{b^2}{3}=c^2+\frac{b^2}{3}+a^2+ac+c^2\left(=25\right)\)

\(\Rightarrow a^2+ab+\frac{b^2}{3}=2c^2+\frac{b^2}{3}+a^2+ac\\ \Rightarrow ab=2c^2+ac\\ \Rightarrow ab+ac=2c^2+2ac\\ \Rightarrow a\left(b+c\right)=2c\left(a+c\right)\\ \Rightarrow\frac{2c}{a}=\frac{b+c}{a+c}\)

Bình luận (0)
 Khách vãng lai đã xóa
LM
Xem chi tiết
HG
15 tháng 10 2016 lúc 21:24

b2 = ac => \(\frac{a}{b}=\frac{b}{c}\)

c2 = bd => \(\frac{b}{c}=\frac{c}{d}\)

=> \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)

=> \(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{abc}{bcd}=\frac{a}{d}\)

Theo tính chất dãy tỉ số bằng nhau

=> \(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a}{d}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)

=> \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\)

=> Đpcm

Bình luận (0)
PQ
Xem chi tiết
H24
Xem chi tiết
LA
4 tháng 9 2016 lúc 20:49

Ta có: \(b^2=ac\Rightarrow\frac{a}{b}=\frac{b}{c};c^2=bd\Rightarrow\frac{b}{c}=\frac{c}{d}\Leftrightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)

Đặt \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=k\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=k^3\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có: \(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3-c^3}{b^3+c^3-d^3}=k^3\)(1)

Mặt khác: Áp dụng tính chất dãy tỉ số bằng nhau ta cũng có:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b-c}{b+c-d}=k\Rightarrow\left(\frac{a+b-c}{b+c-d}\right)^3=k^3\)(2)

Từ (1) và (2) ta được: \(\frac{a^3+b^3-c^3}{b^3+c^3-d^3}=\left(\frac{a+b-c}{b+c-d}\right)^3\left(=k^3\right)\)

(Mình có sửa lại đề vì nếu viết mẫu của phân số thứ nhất là b3 + c3 + d3 là sai)

Bình luận (0)
H24
4 tháng 9 2016 lúc 20:52

bạn có chơi truy kich ko

Bình luận (0)
KK
7 tháng 11 2016 lúc 9:19

DE sai ban oi

k nha

Bình luận (0)