Violympic toán 7

H24

cho biết \(a^2+ab+\frac{b^2}{3}=25\) ; \(c^2+\frac{b^2}{3}=9;a^2+ac+c^2=16\) và a≠0, b≠0, c≠0. Chứng minh : \(\frac{2c}{a}=\frac{b+c}{a+c}\)

H24
9 tháng 2 2020 lúc 10:51

\(a^2+ab+\frac{b^2}{3}=c^2+\frac{b^2}{3}+a^2+ac+c^2\left(=25\right)\)

\(\Rightarrow a^2+ab+\frac{b^2}{3}=2c^2+\frac{b^2}{3}+a^2+ac\\ \Rightarrow ab=2c^2+ac\\ \Rightarrow ab+ac=2c^2+2ac\\ \Rightarrow a\left(b+c\right)=2c\left(a+c\right)\\ \Rightarrow\frac{2c}{a}=\frac{b+c}{a+c}\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
MH
Xem chi tiết
LN
Xem chi tiết
TH
Xem chi tiết
DH
Xem chi tiết
DH
Xem chi tiết
DH
Xem chi tiết
QP
Xem chi tiết
LL
Xem chi tiết
LH
Xem chi tiết