Violympic toán 7

DH

Cho a,b,c,d \(\ne\) 0 và \(b^2=ac;c^2=bd\). Chứng minh \(\frac{a^2+b^2+c^2}{b^2+c^2+d^2}=\frac{\left(a+b+c\right)^2}{\left(b+c+d\right)^2}=\frac{a}{d}\)

NL
30 tháng 10 2019 lúc 18:26

Đề bài sai nhé

Đẳng thức này mới đúng: \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{\left(a+b+c\right)^3}{\left(b+c+d\right)^3}=\frac{a}{d}\)

Bình luận (0)
 Khách vãng lai đã xóa
NL
30 tháng 10 2019 lúc 18:34

\(\left\{{}\begin{matrix}b^2=ac\Rightarrow\frac{a}{b}=\frac{b}{c}\\c^2=bd\Rightarrow\frac{b}{c}=\frac{c}{d}\end{matrix}\right.\) \(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b+c}{b+c+d}\)

\(\Rightarrow\frac{a}{d}=\frac{abc}{bcd}=\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{\left(a+b+c\right)^3}{\left(b+c+d\right)^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
DH
Xem chi tiết
DH
Xem chi tiết
VH
Xem chi tiết
TH
Xem chi tiết
DK
Xem chi tiết
DH
Xem chi tiết
H24
Xem chi tiết
QN
Xem chi tiết
TM
Xem chi tiết