Những câu hỏi liên quan
NT
Xem chi tiết
H24
3 tháng 11 2023 lúc 21:02

A là đáp án đúng!

Bình luận (0)
PB
Xem chi tiết
CT
23 tháng 6 2018 lúc 10:27

- Lập bảng giá trị:

x -4 -2 0 2 4
y = -0,75x2 -12 -3 0 -3 -12

- Vẽ đồ thị:

Giải bài 10 trang 39 SGK Toán 9 Tập 2 | Giải toán lớp 9

- Quan sát đồ thị hàm số y = -0,75x2:

Khi x tăng từ -2 đến 4, y tăng từ -3 đến 0 rồi lại giảm xuống -12.

Vậy: Giá trị nhỏ nhất của y = -12 đạt được khi x = 4

Giá trị lớn nhất của y = 0 đạt được khi x = 0.

Bình luận (0)
PB
Xem chi tiết
CT
3 tháng 1 2020 lúc 17:14

- Lập bảng giá trị:

x -4 -2 0 2 4
y   =   - 0 , 75 x 2 -12 -3 0 -3 -12

- Vẽ đồ thị:

Giải bài 10 trang 39 SGK Toán 9 Tập 2 | Giải toán lớp 9

- Quan sát đồ thị hàm số  y   =   - 0 , 75 x 2 :

Khi x tăng từ -2 đến 4, y tăng từ -3 đến 0 rồi lại giảm xuống -12.

Vậy: Giá trị nhỏ nhất của y = -12 đạt được khi x = 4

Giá trị lớn nhất của y = 0 đạt được khi x = 0.

Bình luận (0)
NT
Xem chi tiết
NT
9 tháng 11 2023 lúc 10:16

loading...  loading...  

Bình luận (1)
SK
Xem chi tiết
QD
4 tháng 4 2017 lúc 14:45

Vẽ đồ thị: y = -0,75x2

x -4 -2 -1 0 1 2 4
y=-0,75x2 -12 -3 -0,75 0 -0,75 -3 -12

Vì -2 < 0 < 4 và khi x = 0 thì y = 0 là giá trị lớn nhất của hàm số. Hơn nữa khi x = -2 thì y = -0,75 . (-2)2 = -3, khi x = 4 thì y = -0,75 . (4)2 = -12 < -3

Do đó khi -2 ≤ x ≤ 4 thì giá trị nhỏ nhất của hàm số là -12 còn giá trị lớn nhất là 0.

Bình luận (0)
DV
Xem chi tiết
LN
Xem chi tiết
PB
Xem chi tiết
CT
6 tháng 1 2017 lúc 6:22

Đáp án A

Bình luận (0)
CB
Xem chi tiết
NL
6 tháng 8 2018 lúc 9:08

\(y=\sqrt{\frac{x^2}{4}+\sqrt{x^2-4}}+\sqrt{\frac{x^2}{4}-\sqrt{x^2-4}}\) Điều kiện: \(x\ge2\)

\(\Rightarrow2y=2.\sqrt{\frac{x^2}{4}+\sqrt{x^2-4}}+2.\sqrt{\frac{x^2}{4}-\sqrt{x^2-4}}\)

\(=\sqrt{x^2+4\sqrt{x^2-4}}+\sqrt{x^2-4\sqrt{x^2-4}}\)

\(=\sqrt{x^2-4+4\sqrt{x^2-4}+4}+\sqrt{x^2-4-4\sqrt{x^2-4}+4}\)

\(=\sqrt{\left(\sqrt{x^2-4}+2\right)^2}+\sqrt{\left(\sqrt{x^2-4}-2\right)^2}\)

\(=\left|\sqrt{x^2-4}+2\right|+\left|\sqrt{x^2-4}-2\right|\)

\(=\sqrt{x^2-4}+2+\left|\sqrt{x^2-4}-2\right|\)(1)

TH1: \(\sqrt{x^2-4}-2\ge0\Rightarrow\sqrt{x^2-4}\ge2\Rightarrow x^2-4\ge4\Rightarrow x\ge2\sqrt{2}\).Ta có:

\(\left(1\right)=\sqrt{x^2-4}+2+\sqrt{x^2-4}-2=2\sqrt{x^2-4}\)

Do \(x\ge2\sqrt{2}\Rightarrow2\sqrt{x^2-4}\ge2\sqrt{\left(2\sqrt{2}\right)^2-4}=4\)

TH2:  \(\sqrt{x^2-4}-2< 0\Rightarrow\sqrt{x^2-4}< 2\Rightarrow x^2-4< 4\Rightarrow x^2< 8\Rightarrow2\le x< 2\sqrt{2}\).Ta có:

\(\left(1\right)=\sqrt{x^2-4}+2-\sqrt{x^2-4}+2=4\)

Vậy GTNN của y bằng 4.

Dấu "=" xảy ra khi \(2\le x\le2\sqrt{2}\)

Bình luận (0)
PB
Xem chi tiết
CT
12 tháng 5 2018 lúc 13:02

Đáp án D.

Bình luận (0)