Trong mặt phẳng Oxy có A(1;3) B(4;1) C(-2;-1)
a) tìm điểm H thuộc Ox sao cho HB+HC nhỏ nhất
b) tìm điểm K thuộc Ox sao cho KH+KB nhỏ nhất
c) tìm điểm M thuộc Oy sao cho /MA-MB/ lớn nhất
d) tìm điểm N thuộc Oy sao cho /NA-NC/ lớn nhất
(1) trong mặt phẳng tọa độ Oxy, cho hai vecto \(\overrightarrow{a}=\left(1;-4\right)\), \(\overrightarrow{b}=\left(0;2\right)\). tọa độ của vecto \(\overrightarrow{u}=2\overrightarrow{a}-\overrightarrow{b}\) là?
(2) trong mặt phẳng tọa độ Oxy, cho hai vecto \(\overrightarrow{a}=\left(-7;3\right)\), \(\overrightarrow{b}=\left(4;1\right)\). tọa độ của vecto \(\overrightarrow{u}=\overrightarrow{b}-2\overrightarrow{a}\) là?
(3) trong mặt phẳng tọa độ Oxy, cho hai vecto \(\overrightarrow{u}=\left(-5;4\right)\), \(\overrightarrow{v}=-3\overrightarrow{j}\). tọa độ của vecto \(\overrightarrow{a}=2\overrightarrow{u}-5\overrightarrow{v}\) là?
(4) trong mặt phẳng tọa độ Oxy, cho hai điểm A (1;1), B (4;-7) và \(\overrightarrow{OM}=2\overrightarrow{OA}-5\overrightarrow{OB}\). tổng hoành độ và tung độ của điểm M là?
giúp mk vs ạ mk cần gấp thank
(1); vecto u=2*vecto a-vecto b
=>\(\left\{{}\begin{matrix}x=2\cdot1-0=2\\y=2\cdot\left(-4\right)-2=-10\end{matrix}\right.\)
(2): vecto u=-2*vecto a+vecto b
=>\(\left\{{}\begin{matrix}x=-2\cdot\left(-7\right)+4=18\\y=-2\cdot3+1=-5\end{matrix}\right.\)
(3): vecto a=2*vecto u-5*vecto v
\(\Leftrightarrow\left\{{}\begin{matrix}a=2\cdot\left(-5\right)-5\cdot0=-10\\b=2\cdot4-5\cdot\left(-3\right)=15+8=23\end{matrix}\right.\)
(4): vecto OM=(x;y)
2 vecto OA-5 vecto OB=(-18;37)
=>x=-18; y=37
=>x+y=19
trong mặt phẳng oxy viết phương trình đường tròn (c) có tâm nằm trên trục hoành và đường tròn (c) tiếp xúc với cả hai đường thẳng (d1):2x-y-1=0 (d2):x-2y+1=0 Trong mặt phẳng Oxy,viết phương trình đường tròn
1. Trong mặt phẳng Oxy, cho đường tròn (C): \(x^2+y^2-2x+4y-4=0\)và điểm M(-1;-3). Gọi I là tâm của (C). Viết phương trình đường thẳng đi qua M và cắt (C) tại hai điểm A,B sao cho tam giác IAB có diện tích lớn nhất
2. Trong mặt phẳng Oxy, cho đường tròn (C): \(x^2+y^2+4x+4y-17=0\) và điểm A(6;17). Viết phương trình tiếp tuyến của (C) biế tiếp tuyến đi qua điểm A.
Bài 1 : tìm m để 3 điểm A( 2 ; -1 ) , B ( 1 ; 1 ) , C ( 3 ; m+1 ) trong mặt phẳng Oxy thẳng hàng .
Bài 2 : trong mặt phẳng Oxy cho A ( 1; 2 ) , B ( 3 ; 4 ) . tìm điểm M thuộc Ox sao cho MA + MB đạt giá trị nhỏ nhất .
Trong không gian với hệ tọa độ Oxyz, mặt phẳng qua điểm A(1;2;3) và song song với mặt phẳng toạ độ (Oxy) có phương trình là
A. x-1=0.
B. y-2=0.
C. z+3=0.
D. z-3=0.
trong mặt phẳng Oxy cho hai điểm A(-1;5) và B(3;-1) trung điểm I của đoạn thẳng AB có độ là
\(\left\{{}\begin{matrix}x_I=\dfrac{x_A+x_B}{2}=\dfrac{-1+3}{2}=1\\y_I=\dfrac{y_A+y_B}{2}=\dfrac{5+\left(-1\right)}{2}=2\end{matrix}\right.\)
\(\Rightarrow I\left(1;2\right)\)
Trong không gian Oxyz, cho điểm A(1;-2;3). Hình chiếu vuông góc của điểm A trên mặt phẳng (Oxy) là điểm M có tọa độ
A. M(1;-2;0).
B. M(0;-2;3).
C. M(1;0;3).
D. M(2;-1;0).
Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có A(-1, 1); B (1; 3) và C(1; -1). Khẳng định nào sau đây là đúng ?
A. Tam giác ABC đều.
B. Tam giác ABC có ba góc đều nhọn.
C. Tam giác ABC cân tại B.
D. Tam giác ABC vuông cân tại A.
Ta có A B → = 2 ; 2 , B C → = 0 ; − 4 và A C → = 2 ; − 2 .
Suy ra A B = A C = 2 2 A B 2 + A C 2 = B C 2 .
Vậy tam giác ABC vuông cân tại A.
Chọn D
Trong mặt phẳng tọa độ Oxy, cho hình vuông ABCD có A(1; -1) và B(3; 0). Tìm tọa độ điểm D, biết D có tung độ âm.
A.D(0; -1)
B. D( 2; -3)
C. D( 2; -3); D(0; 1)
D. D( -2; -3)
Gọi C= (x, y). Ta có A B → = 2 ; 1 B C → = x − 3 ; y .
Vì ABCD là hình vuông nên ta có A B → ⊥ B C → A B = B C
⇔ 2 x − 3 + 1. y = 0 x − 3 2 + y 2 = 5 ⇔ y = 2 3 − x 5 x − 3 2 = 5 ⇔ y = 2 3 − x x − 3 2 = 1 ⇔ x = 4 y = − 2 hoặc x = 2 y = 2 .
Với C 1 4 ; − 2 ta tính được đỉnh D 1 2 ; − 3 : thỏa mãn.
Với C 2 2 ; 2 ta tính được đỉnh D 2 0 ; 1 : không thỏa mãn.
Chọn B.
Bài 3. Trong mặt phẳng Oxy cho các điểm A(0,−2), B(1,0), C(5,−1) và D(−2,3).
a) Dựng các điểm A, B, C, D trên mặt phẳng tọa độ Oxy.
cho minh hoi dung cai diem laf no keu minh lam gif he