Giải phương trình sau:
\(\sqrt{3}\) cosx + 2sin2(\(\frac{x}{2}-\frac{\pi}{4}\)) = 1
giải các phương trình sau:
a, \(\sqrt{3}sinx+cosx=\frac{1}{cosx}\)
b,\(3tan^2x\left(x-\frac{\pi}{2}\right)=2\left(\frac{1-sinx}{sinx}\right)\)
c,\(1+sinx+cosx+tanx=0\)
d,\(\frac{1}{cosx}+\frac{1}{sinx}=\sqrt{2}sin\left(x+\frac{\pi}{4}\right)\)
Phương trình : \(\frac{sinx+cosx}{sinx-cosx}=\sqrt{3}\) tương đương với phương trình :
A . \(cot\left(x+\frac{\pi}{4}\right)=-\sqrt{3}\)
B . \(tan\left(x+\frac{\pi}{4}\right)=\sqrt{3}\)
C . \(tan\left(x+\frac{\pi}{4}\right)=-\sqrt{3}\)
D . \(cot\left(x+\frac{\pi}{4}\right)=\sqrt{3}\)
Trình bày bài giải chi tiết rồi ms chọn đáp án nha các bạn .
HELP ME !!!!!!
giải phương trình sau:
a,\(\frac{sin2x+2cosx-sinx-1}{tanx+\sqrt{3}}=0\)
b,\(\frac{\left(1+sinx+cos2x\right)sinx\left(x+\frac{\pi}{4}\right)}{1+tanx}=\frac{1}{\sqrt{2}}cosx\)
c,\(\frac{\left(1-sin2x\right)cosx}{\left(1+sin2x\right)\left(1-sinx\right)}=\sqrt{3}\)
d,\(\frac{1}{sinx}+\frac{1}{sin\left(x-\frac{3\pi}{2}\right)}=4sin\left(\frac{7\pi}{4}-x\right)\)
Câu 1: Giải các phương trình sau:
a, \(\left(sin\frac{x}{2}+cos\frac{x}{2}\right)^2\)+\(\sqrt{3}cosx=2\)
b, \(\frac{\left(1-2sinx\right).cosx}{\left(1+2sinx\right)\left(1-sinx\right)}=\sqrt{3}\)
c, 5sinx-2=3(1-sinx).tan2x
d, \(\frac{2\left(sin^6x+cos^6\right)}{\sqrt{2}-2sinx}=0\)
e, cos23x.cos2x-cos2x=0
Câu 2: giải các phương trình sau:
a, sinx+cosx.sin2x+\(\sqrt{3}cos3x=2\left(cos4x+sin^3x\right)\)
b, \(\frac{\left(2-\sqrt{3}\right).cosx-2sin2\left(\frac{x}{2}-\frac{\pi}{4}\right)}{2cosx-1}\)
c, 8sin22x.cos2x=\(\sqrt{3}sin2x+cos2x\)
d, sin3x- \(\sqrt{3}cos^3x=sinxcos^2x-\sqrt{3}sin^2xcosx\)
Giải các phương trình sau:
\(\begin{array}{l}a)\;cosx = - 3\\b)\;cosx = cos{15^o}\\c)\;cos(x + \frac{\pi }{{12}}) = cos\frac{{3\pi }}{{12}}\end{array}\)
a) Với mọi \(x \in \mathbb{R}\) ta có \( - 1 \le cosx \le 1\)
Vậy phương trình \(cosx = - 3\;\) vô nghiệm.
\(\begin{array}{l}b)\,\;cosx = cos{15^o}\;\\ \Leftrightarrow \left[ \begin{array}{l}x = {15^o} + k{360^o},k \in \mathbb{Z}\\x = - {15^o} + k{360^o},k \in \mathbb{Z}\end{array} \right.\end{array}\)
Vậy phương trình có nghiệm \(x = {15^o} + k{360^o}\) hoặc \(x = - {15^o} + k{360^o},k \in \mathbb{Z}\).
\(\begin{array}{l}c)\;\,cos(x + \frac{\pi }{{12}}) = cos\frac{{3\pi }}{{12}}\\ \Leftrightarrow \left[ \begin{array}{l}x + \frac{\pi }{{12}} = \frac{{3\pi }}{{12}} + k2\pi ,k \in \mathbb{Z}\\x + \frac{\pi }{{12}} = - \frac{{3\pi }}{{12}} + k2\pi ,k \in \mathbb{Z}\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{6} + k2\pi ,k \in \mathbb{Z}\\x = - \frac{\pi }{3} + k2\pi ,k \in \mathbb{Z}\end{array} \right.\end{array}\)
Vậy phương trình có nghiệm \(x = \frac{\pi }{6} + k2\pi ,\) hoặc \(x = - \frac{\pi }{3} + k2\pi ,k \in \mathbb{Z}\).
Giải các phương trình lượng giác sau:
\(\begin{array}{l}a)\;cot\left( {\frac{1}{2}x + \frac{\pi }{4}} \right) = - 1\\b)\;cot3x = - \frac{{\sqrt 3 }}{3}\end{array}\)
a, Điều kiện xác định: \(\frac{1}{2}x + \frac{\pi }{4} \ne k\pi \Leftrightarrow x \ne - \frac{\pi }{2} + k2\pi ,k \in \mathbb{Z}.\)
Ta có: \(cot\left( {\frac{1}{2}x + \frac{\pi }{4}} \right) = - 1 \Leftrightarrow cot\left( {\frac{1}{2}x + \frac{\pi }{4}} \right) = \cot \left( { - \frac{\pi }{4}} \right)\)
\( \Leftrightarrow \frac{1}{2}x + \frac{\pi }{4} = - \frac{\pi }{4} + k\pi \Leftrightarrow x = - \pi + k2\pi ,k \in \mathbb{Z}\,\,(TM).\)
Vậy \(x = - \pi + k2\pi ,k \in \mathbb{Z}\,\).
b, Điều kiện xác định: \(3x \ne k\pi \Leftrightarrow x \ne k\frac{\pi }{3},k \in \mathbb{Z}.\)
\(\;cot3x = - \frac{{\sqrt 3 }}{3} \Leftrightarrow cot3x = \cot \left( { - \frac{\pi }{3}} \right)\)
\( \Leftrightarrow 3x = - \frac{\pi }{3} + k\pi \Leftrightarrow x = - \frac{\pi }{9} + k\frac{\pi }{3},k \in \mathbb{Z}\,\,(TM).\)
Vậy \(x = - \frac{\pi }{9} + k\frac{\pi }{3},k \in \mathbb{Z}\,\).
Bài 1: :Giải phương trình: \(sin\left(\frac{\pi}{3}cosx-\frac{8\pi}{3}\right)=0\)
Bài 2: Giải phương trình: \(cot\left(\frac{\pi}{3}cos2\pi x\right)=\sqrt{3}\)
1.
\(\Leftrightarrow\frac{\pi}{3}cosx-\frac{8\pi}{3}=k\pi\)
\(\Leftrightarrow cosx=8+3k\)
Do \(-1\le cosx\le1\Rightarrow-1\le8+3k\le1\)
\(\Rightarrow-3\le k\le-\frac{7}{3}\) \(\Rightarrow k=-3\)
\(\Rightarrow cosx=-1\Rightarrow x=\pi+k2\pi\)
2.
\(\Leftrightarrow\frac{\pi}{3}cos2\pi x=\frac{\pi}{6}+k\pi\)
\(\Leftrightarrow cos2\pi x=\frac{1}{2}+3k\)
Do \(-1\le2\pi x\le1\Rightarrow-1\le\frac{1}{2}+3k\le1\)
\(\Rightarrow-\frac{1}{2}\le k\le\frac{1}{6}\Rightarrow k=0\)
\(\Rightarrow cos2\pi x=\frac{1}{2}\Rightarrow\left[{}\begin{matrix}2\pi x=\frac{\pi}{3}+k2\pi\\2\pi x=-\frac{\pi}{3}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{6}+k\\x=-\frac{1}{6}+k\end{matrix}\right.\)
Tìm tập xác định của hàm số:
y=\(\frac{3sinx+cosx}{cos\left(4x+\frac{2\pi}{5}\right)+cos\left(3x-\frac{\pi}{4}\right)}\)
Tìm giá trị gần đúng nghiệm của các phương trình sau:
cos\(\frac{x}{2}\)= \(\frac{\sqrt{2}}{3}\) trong khoảng (2π, 4π)
Giải các phương trình:
a, cos3x+cos2x-cosx-1=0
b, (2cos-1)(2sinx+cosx)=sin2x-sinx
@Nguyễn Việt Lâm giúp em với ạ
1.
ĐKXĐ: \(cos\left(4x+\frac{2\pi}{5}\right)+cos\left(3x-\frac{\pi}{4}\right)\ne0\)
\(\Leftrightarrow cos\left(4x+\frac{2\pi}{5}\right)\ne cos\left(3x+\frac{3\pi}{4}\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}4x+\frac{2\pi}{5}\ne3x+\frac{3\pi}{4}+k2\pi\\4x+\frac{2\pi}{5}\ne-3x-\frac{3\pi}{4}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ne\frac{7\pi}{20}+k2\pi\\x\ne-\frac{23\pi}{140}+\frac{k2\pi}{7}\end{matrix}\right.\)
2.
\(\Leftrightarrow\left[{}\begin{matrix}\frac{x}{2}=arccos\left(\frac{\sqrt{2}}{3}\right)+k2\pi\\\frac{x}{2}=-arccos\left(\frac{\sqrt{2}}{3}\right)+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2arccos\left(\frac{\sqrt{2}}{3}\right)+k4\pi\\x=-2arccos\left(\frac{\sqrt{2}}{3}\right)+k4\pi\end{matrix}\right.\)
\(\Rightarrow x=4\pi-2arccos\left(\frac{\sqrt{2}}{3}\right)\approx10.41\left(rad\right)\)
3.
a.
\(\Leftrightarrow\left(cos3x-cosx\right)+\left(cos2x-1\right)=0\)
\(\Leftrightarrow-2sin2x.sinx+1-2sin^2x-1=0\)
\(\Leftrightarrow sin2x.sinx+sin^2x=0\)
\(\Leftrightarrow2sin^2x.cosx+sin^2x=0\)
\(\Leftrightarrow sin^2x\left(2cosx+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\\cosx=-\frac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=k\pi\\x=\frac{2\pi}{3}+k2\pi\\x=-\frac{2\pi}{3}+k2\pi\end{matrix}\right.\)
1) cho góc x thỏa mãn \(cosx=-\dfrac{4}{5}\) và \(\pi< x< \dfrac{3\pi}{2}\) tính \(P=tan\left(x-\dfrac{\pi}{4}\right)\)
2) giải phương trình \(2cosx-\sqrt{2}=0\)
3) phương trình lượng giác \(cos3x=cos\dfrac{\pi}{15}\) có nghiệm là