Những câu hỏi liên quan
C1
Xem chi tiết
HM
20 tháng 9 2023 lúc 20:35

Đề bài yêu cầu gì vậy em.

Bình luận (0)
AD
Xem chi tiết
LM
4 tháng 6 2021 lúc 14:38

/\(2020\left(\dfrac{1}{x^2+y^2}+\dfrac{1}{y^2+z^2}+\dfrac{1}{x^2+y^2}\right)ápdụngBDT\)

\(\dfrac{1}{x^2+y^2}+\dfrac{1}{y^2+z^2}+\dfrac{1}{x^2+z^2}\ge\dfrac{9}{2\left(x^2+y^2+z^2\right)}=\dfrac{9}{2\cdot2020}\)

\(ápdụngBĐTcosi\)

\(x^3+y^3+z^3\ge3xyz\)

\(\)=> VP\(\ge\) 9/2

Bình luận (0)
CD
Xem chi tiết
KR
5 tháng 7 2023 lúc 9:05

`@` `\text {Ans}`

`\downarrow`

\(C= x^2-y^2+z^2-x^2+y^2-z^2+x^2+y^2+z^2\)

`= (x^2 - x^2 + x^2) + (-y^2 + y^2 + y^2) + (z^2 - z^2 + x^2)`

`= x^2 + y^2 + z^2`

 

 

Bình luận (0)
H9
5 tháng 7 2023 lúc 9:05

\(C=x^2-y^2+z^2-x^2+y^2-z^2+x^2+y^2+z^2\)

\(C=\left(x^2-x^2+x^2\right)-\left(y^2-y^2-y^2\right)+\left(z^2-z^2+z^2\right)\)

\(C=x^2-\left(-y^2\right)+z^2\)

\(C=x^2+y^2+z^2\)

Bình luận (0)
DN
Xem chi tiết
AH
25 tháng 1 2021 lúc 10:48

Lời giải:Vì $x^2+y^2+z^2=2$ nên:

$P=\frac{x^2+y^2+z^2}{x^2+y^2}+\frac{x^2+y^2+z^2}{y^2+z^2}+\frac{x^2+y^2+z^2}{z^2+x^2}-\frac{x^3+y^3+z^3}{2xyz}$

$=3+\frac{x^2}{y^2+z^2}+\frac{y^2}{x^2+z^2}+\frac{z^2}{x^2+y^2}-\frac{x^3+y^3+z^3}{2xyz}$

$\leq 3+\frac{x^2}{2yz}+\frac{y^2}{2xz}+\frac{z^2}{2xy}-\frac{x^3+y^3+z^3}{2xyz}$

(theo BĐT AM-GM)

$=3+\frac{x^3+y^3+z^3}{2xyz}-\frac{x^3+y^3+z^3}{2xyz}=3$

Vậy $P_{\max}=3$

Dấu "=" xảy ra khi $x=y=z=\sqrt{\frac{2}{3}}$

 

Bình luận (0)
PB
Xem chi tiết
CT
27 tháng 4 2018 lúc 7:32

Q = x2 + y2 + z2 + x2 – y2 + z2 + x2 + y2 – z2

Q = (x2 + x2 + x2) + (y2 – y2 + y2) + (z2 – z2 + z2)

Q = 3x2 + y2 + z2

(Có bạn nào có thắc mắc về bậc của đa thức này không? Bậc 2 nhé!!!)

Bình luận (0)
PP
Xem chi tiết
SS
Xem chi tiết
HT
25 tháng 11 2015 lúc 21:44

Vậy phương trình chỉ có nghiệm tầm thường (0;0;0) 

Bình luận (0)
H24
25 tháng 11 2015 lúc 22:03

vì 2xyz chẵn => X^2+y^2+z^2 chẵn

2TH

TH1: giả sử x chẵn,y,z đều lẻ thì

x=2a,y=2b+1,z=2c+1

thay vào phương trình đã cho thì được VT lẻ , VP chẵn nên mẫu thuẫn

TH2: 3 số đều chẵn

x=2a,y=2b,z=2c

=> 4(a^2+b^2+c^2)=16abc

=> a^2+b^2+c^2=4abc

cứ như thế,pt lùi vô hạn, nghiệm bằng 0

x=y=z=0

Bình luận (0)
DD
Xem chi tiết
HN
4 tháng 9 2021 lúc 1:19

undefined

Bình luận (0)
NK
22 tháng 11 2021 lúc 20:10

Bình luận (0)
PB
Xem chi tiết
CT
8 tháng 9 2017 lúc 8:13

(x2 + y2 + z2) + (x2 – y2 + z2)

= x2 + y2 + z2 + x2 – y2 + z2

= (x2 + x2) + (y2 – y2) + (z2 + z2)

= 2x2 + 2z2

Bình luận (0)