Những câu hỏi liên quan
TT
Xem chi tiết
NT
19 tháng 8 2021 lúc 14:48

a: Ta có: \(\left(3x+5\right)^2-4x^2=0\)

\(\Leftrightarrow\left(3x+5+2x\right)\left(3x+5-2x\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-5\end{matrix}\right.\)

Bình luận (0)
H24
Xem chi tiết
H24
1 tháng 8 2021 lúc 17:09

a) \(\left(x-4\right)^2-\left(x-4\right)=0\)

\(\left(x-4\right)\left(x-4-1\right)=0\)

\(\left[{}\begin{matrix}x-4=0\\x-5=0\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=4\\x=5\end{matrix}\right.\)

b) \(5x^2\left(x-7\right)+7\left(x-7\right)=0\)

\(\left(x-7\right)\left(5x^2+7\right)=0\)

\(\left[{}\begin{matrix}x-7=0\\5x^2+7=0\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=7\\x^2=\dfrac{-7}{5}\end{matrix}\right.\)

\(x=7\)

c) \(x^2\left(x-3\right)-\left(x-3\right)=0\)

\(\left(x-3\right)\left(x^2-1\right)=0\)

\(\left[{}\begin{matrix}x=3\\x=\pm1\end{matrix}\right.\)

Bình luận (0)
ND
1 tháng 8 2021 lúc 17:21

a) (x - 4)^2=(x - 4)

(x - 4) (x -4)=(x -4 )

(x - 4) (x - 4)-(x - 4)=0

(x-4) (x-4-1)=0

(x-4) (x-5)=0

TH1:x-4=0                          TH2:x-5=0

            x=4                                      x=5

 

Bình luận (0)
HT
Xem chi tiết
NM
31 tháng 10 2021 lúc 9:28

\(a,\Rightarrow4x^2-20x-4x^2+3x+4x-3=5\\ \Rightarrow-13x=8\Rightarrow x=-\dfrac{8}{13}\\ b,\Rightarrow3x^2-10x+8-3x^2+27x=-3\\ \Rightarrow17x=-11\Rightarrow x=-\dfrac{11}{17}\\ c,\Rightarrow\left(x+3\right)\left(2-x\right)=0\Rightarrow\left[{}\begin{matrix}x=-3\\x=2\end{matrix}\right.\\ d,\Rightarrow2x\left(4x^2-25\right)=0\\ \Rightarrow2x\left(2x-5\right)\left(2x+5\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{2}{5}\\x=-\dfrac{2}{5}\end{matrix}\right.\\ e,Sửa:\left(4x-3\right)^2-3x\left(3-4x\right)=0\\ \Rightarrow\left(4x-3\right)^2+3x\left(4x-3\right)=0\\ \Rightarrow\left(4x-3\right)\left(7x-3\right)=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{4}\\x=\dfrac{3}{7}\end{matrix}\right.\)

Bình luận (0)
H24
31 tháng 10 2021 lúc 9:37

a.

4x(x-5) - (x-1)(4x-3)-5=0

 4x^2-20x-4x^2+3x+4x+3=0

(4x^2-4x^2)+(-20x+3x+4x)+3=0

 13x+3 = 0

13x=-3

x=-3/13

b,

(3x-4)(x-2)-3x(x-9)+3=0

3x^2-6x-4x+8 - 3x^2+27x+3=0

(3x^2-3x^2)+(-6x-4x+27x)+(8+3)=0

17x+11=0

17x=-11

x=-11/17

c, 2(x+3)-x^2-3x=0

2(x+3) - x(x+3)=0

(x+3)(2-x)=0

TH1: x+3 = 0; x=-3

TH2: 2-x=0;x=2

 

 

Bình luận (0)
KH
Xem chi tiết
PG
30 tháng 7 2021 lúc 8:47

a)   \(\left(2x-1\right)^2-25=0\)

⇔ \(\left(2x-1\right)^2-5^2=0\)

⇔  \(\left(2x-1-5\right)\left(2x-1+5\right)=0\)

⇒  \(2x-1-5=0\) hoặc \(2x-1+5=0\)

⇔      \(x=3\)           hoặc  \(x=-2\)

Bình luận (0)
TC
30 tháng 7 2021 lúc 8:59

Bài 1: Tìm x

a) (2x-1) ² - 25 = 0

<=> (2x-1)2 =  25

<=>  2x-1 = 5  hay 2x-1 =-5

<=>  2x= 6      hay  2x=-4

<=>   x=3     hay    x= -2

Vậy S={3; -2}
b) 3x (x-1) + x - 1 = 0

<=> (x-1)(3x+1)=0

<=> x-1=0  hay  3x+1=0

<=> x=1 hay 3x=-1

<=> x=1 hay x=\(\dfrac{-1}{3}\)

Vậy S={1;\(\dfrac{-1}{3}\)}

c) 2(x+3) - x ² - 3x = 0

<=> 2(x+3)- x(x+3)=0

<=> (x+3)(2-x)=0

<=> x+3=0 hay 2-x=0

<=> x=-3  hay  x=2

Vậy S={-3;2}
d) x(x - 2) + 3x - 6 = 0

<=> x(x-2)+3(x-2)=0

<=> (x-2)(x+3)=0

<=> x-2=0 hay x+3=0

<=> x=2 hay x=-3

Vậy S={2;-3}
e) 4x ² - 4x +1 = 0

<=> (2x-1)2=0

<=> 2x-1=0

<=> 2x=1

<=> x=\(\dfrac{1}{2}\)

Vậy S={\(\dfrac{1}{2}\)}
f) x +5x2  = 0

<=> x(1+5x)=0

<=>x=0 hay 1+5x=0

<=> x=0 hay 5x=-1

<=> x=0 hay x= \(\dfrac{-1}{5}\)

Vậy S={0;\(\dfrac{-1}{5}\)}
g) x ²+ 2x -3 = 0

<=> x2-x+3x-3=0

<=> x(x-1)+3(x-1)=0

<=>  (x-1)(x+3)=0

<=> x-1=0 hay x+3=0

<=> x=1  hay x=-3

Vậy S={1;-3}

 

Bình luận (0)
H24
30 tháng 7 2021 lúc 9:00

b) \(\text{3x (x-1) + x - 1 = 0}\)

\(\Rightarrow3x\left(x-1\right)+\left(x-1\right)=0\)

\(\Rightarrow\left(3x+1\right)\left(x-1\right)=0\\\)

\(\Rightarrow\left[{}\begin{matrix}3x+1=0\\x-1=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=\dfrac{-1}{3}\\x=1\end{matrix}\right.\)

c) \(\text{2(x+3) - x ² - 3x = 0}\)

\(\Rightarrow2\left(x+3\right)-x\left(x+3\right)=0\\ \Rightarrow\left(2-x\right)\left(x+3\right)=0\\ \Rightarrow\left[{}\begin{matrix}2-x=0\\x+3=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)

d) \(\text{x(x - 2) + 3x - 6 = 0}\)

\(\Rightarrow x(x - 2) + 3(x - 2) = 0\\ \Rightarrow\left(x+3\right)\left(x-2\right)=0\\ \Rightarrow\left[{}\begin{matrix}x+3=0\\x-2=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=-3\\x=2\end{matrix}\right.\)

e)

\(\text{4x ² - 4x +1 = 0}\\ \Rightarrow\left(2x-1\right)^2=0\\ \Rightarrow2x-1=0\\ \Rightarrow x=0,5\)

f) \(\text{x +5x ² = 0}\)

\(\Rightarrow x\left(x+5\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\x+5=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)

viết lại câu g đi bạn

Bình luận (0)
KL
Xem chi tiết
KL
10 tháng 8 2021 lúc 14:37

đầu bài là tìm x ạ

Bình luận (0)
TC
10 tháng 8 2021 lúc 14:43

undefined

Bình luận (0)
MY
10 tháng 8 2021 lúc 14:46

\(a,< =>2\left(x-4\right)^2+4x\left(x-4\right)=0< =>\left(x-4\right)\left(2x-8+4x\right)=0\)\(< =>\left(x-4\right)\left(6x-8\right)=0< =>\left[{}\begin{matrix}x=4\\x=\dfrac{4}{3}\end{matrix}\right.\)

b,\(< =>4x\left(x-2\right)=0< =>\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)

c,\(< =>3x\left(x+2\right)=0< =>\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)

d,\(< =>4x^2\left(2+x\right)=0< =>\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)

Bình luận (1)
ND
Xem chi tiết
NT
13 tháng 12 2021 lúc 17:37

c: \(\Leftrightarrow\left(x-5\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-1\end{matrix}\right.\)

Bình luận (0)
TO
Xem chi tiết
H24
10 tháng 10 2021 lúc 7:07

\(a.\left(x^2+4x+4\right)+\left(x^2-6x+9\right)=2x^2+14x\)

\(x^2+4x+4+x^2-6x+9-2x^2-14x=0\)

\(-18x+13=0\)

\(x=\dfrac{13}{18}\)

Vậy \(S=\left\{\dfrac{13}{18}\right\}\)

\(b.\left(x-1\right)^3-125=0\)

\(\left(x-1\right)^3=125\)

\(x-1=5\)

\(x=6\)

Vậy \(S=\left\{6\right\}\)

\(c.\left(x-1\right)^2+\left(y +2\right)^2=0\)

\(Do\left(x-1\right)^2\ge0\forall x;\left(y+2\right)^2\ge0\forall y\)

\(\Rightarrow\left(x-1\right)^2+\left(y+2\right)^2\ge0\forall x,y\)

Mà \(\left(x-1\right)^2+\left(y+2\right)^2=0\)

\(\Rightarrow\left[{}\begin{matrix}\left(x-1\right)^2=0\\\left(y+2\right)^2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\y+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)

Vậy \(S=\left\{1;-2\right\}\)

\(d.x^2-4x+4+x^2-2xy+y^2=0\)

\(\left(x-2\right)^2+\left(x-y\right)^2=0\)

\(\Rightarrow\left[{}\begin{matrix}\left(x-2\right)^2=0\\\left(x-y\right)^2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-y=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\y=2\end{matrix}\right.\)

Vậy \(S=\left\{2;2\right\}\)

Bình luận (0)
TT
Xem chi tiết
H24
5 tháng 3 2022 lúc 20:39

\(a,6x-4=5x\\ \Leftrightarrow x-4=0\\ \Leftrightarrow x=4\\ b,\dfrac{2x+3}{3}=\dfrac{5-4x}{2}\\ \Leftrightarrow2\left(2x+3\right)=3\left(5-4x\right)\\ \Leftrightarrow4x+6=15-12x\\ \Leftrightarrow16x-9=0\\ \Leftrightarrow x=\dfrac{9}{16}\\ c,\left(x+7\right)\left(x-10\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x+7=0\\x-10=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-7\\x=10\end{matrix}\right.\)

d, ĐKXĐ:\(x\ne\pm3\)

\(\dfrac{2}{x-3}+\dfrac{3}{x+3}=\dfrac{3x+5}{x^2-9}\\ \Leftrightarrow\dfrac{2\left(x+3\right)}{\left(x+3\right)\left(x-3\right)}+\dfrac{3\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}-\dfrac{3x+5}{\left(x+3\right)\left(x-3\right)}=0\\ \Leftrightarrow\dfrac{2x+6+3x-9-3x-5}{\left(x+3\right)\left(x-3\right)}=0\\ \Rightarrow2x-8=0\\ \Leftrightarrow x=4\left(tm\right)\)

Bình luận (0)
NT
5 tháng 3 2022 lúc 20:41

a.6x-4=5x <=> x=4

b.\(\dfrac{2x+3}{3}=\dfrac{5-4x}{2}\)

\(\Leftrightarrow\dfrac{2\left(2x+3\right)}{6}=\dfrac{3\left(5-4x\right)}{6}\)

\(\Leftrightarrow2\left(2x+3\right)=3\left(5-4x\right)\)

\(\Leftrightarrow4x+6=15-12x\)

\(\Leftrightarrow16x=11\)

\(\Leftrightarrow x=\dfrac{11}{16}\)

c.(x+7)(x-10)=0

\(\Leftrightarrow\left[{}\begin{matrix}x+7=0\\x-10=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=-7\\x=10\end{matrix}\right.\)

d.\(ĐK:x\ne\pm3\)

\(\Rightarrow\dfrac{2}{x-3}+\dfrac{3}{x+3}=\dfrac{3x+5}{\left(x-3\right)\left(x+3\right)}\)

\(\Leftrightarrow\dfrac{2\left(x+3\right)+3\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\dfrac{3x+5}{\left(x-3\right)\left(x+3\right)}\)

\(\Leftrightarrow2\left(x+3\right)+3\left(x-3\right)=3x+5\)

\(\Leftrightarrow2x+6+3x-9-3x-5=0\)

\(\Leftrightarrow2x-8=0\)

\(\Leftrightarrow2x=8\)

\(\Leftrightarrow x=4\left(tm\right)\)

Bình luận (0)
NT
5 tháng 3 2022 lúc 20:37

a, \(6x-5x=4\Leftrightarrow x=4\)

b, \(4x+6=15-12x\Leftrightarrow16x=9\Leftrightarrow x=\dfrac{9}{16}\)

c, \(\left[{}\begin{matrix}x+7=0\\x-10=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-7\\x=10\end{matrix}\right.\)

d, đk : x khác -3 ; 3 

\(2x+6+3x-9=3x+5\Leftrightarrow2x=8\Leftrightarrow x=4\left(tmđk\right)\)

Bình luận (0)
TL
Xem chi tiết
NT
23 tháng 10 2021 lúc 23:42

e: ta có: \(4x^2+4x-6=2\)

\(\Leftrightarrow4x^2+4x-8=0\)

\(\Leftrightarrow\left(x+2\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=1\end{matrix}\right.\)

f: Ta có: \(2x^2+7x+3=0\)

\(\Leftrightarrow\left(x+3\right)\left(2x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-\dfrac{1}{2}\end{matrix}\right.\)

Bình luận (0)