Giải phương trình: \(1+\sin x-\cos x-\sin2x+2\cos2x=0\)
Giải giúp mình với
giải phương trình: \(\sin2x+3\cos2x+8\sin x+14\cos x+11=0\)
giải phương trình: \(\dfrac{5\left(\sqrt{3}\sin x+\cos x\right)-\sqrt{3}\cos2x+\sin2x-6}{\cot x-1}=0\)
giải các phương trình : a) \(\sin x+\sin2x+\sin3x=\cos x+\cos2x+\cos3x\) ; b) \(\sin x=\sqrt{2}\sin5x-\cos x\) ; c) \(\frac{1}{\sin2x}+\frac{1}{\cos2x}=\frac{2}{\sin4x}\) ; d)
\(\sin x+\cos x=\frac{\cos2x}{1-\sin2x}\)
giải các phương trình : a) \(\sin x+\sin2x+\sin3x=\cos x+\cos2x+\cos3x\) ; b) \(\sin x=\sqrt{2}\sin5x-\cos x\) ; c) \(\frac{1}{\sin2x}+\frac{1}{\cos2x}=\frac{2}{\sin4x}\) ; d)
\(\sin x+\cos x=\frac{\cos2x}{1-\sin2x}\)
Giải các phương trình sau :
a) \(\cos2x-\sin x-1=0\)
b) \(\cos x\cos2x=1+\sin x\sin2x\)
c) \(4\sin x\cos x\cos2x=-1\)
d) \(\tan x=3\cot x\)
Giải các phương trình
a) \(\dfrac{\cos2x}{\sin2x-1}=0\)
b) \(\cos\left(\sin x\right)=1\)
c) \(2\sin^2x-1+\cos3x=0\)
d) \(tan3x.tanx=1\)
e) \(\cos3x=-\cos7x\)
a: ĐKXĐ: sin 2x<>1
=>2x<>pi/2+k2pi
=>x<>pi/4+kpi
\(\dfrac{cos2x}{sin2x-1}=0\)
=>cos2x=0
=>2x=pi/2+kpi
=>x=pi/4+kpi/2
Kết hợp ĐKXĐ, ta được:
x=3/4pi+k2pi hoặc x=7/4pi+k2pi
b: cos(sinx)=1
=>sin x=kpi
=>sin x=0
=>x=kpi
c: \(2\cdot sin^2x-1+cos3x=0\)
=>cos3x+cos2x=0
=>cos3x=-cos2x=-sin(pi/2-2x)=sin(2x-pi/2)
=>cos3x=cos(pi/2-2x+pi/2)=cos(pi-2x)
=>3x=pi-2x+k2pi hoặc 3x=-pi+2x+k2pi
=>x=-pi+k2pi hoặc x=pi/5+k2pi/5
e: cos3x=-cos7x
=>cos3x=cos(pi-7x)
=>3x=pi-7x+k2pi hoặc 3x=-pi+7x+k2pi
=>x=pi/10+kpi/5 hoặc x=pi/4-kpi/2
giải phương trình:
\(\left(\cos2x+\sin2x\right)\cos x+2\cos2x-\sin x=0\)
\(\Leftrightarrow cos2x.cosx+2cos2x+sin2x.cosx-sinx=0\)
\(\Leftrightarrow cos2x.cosx+2cos2x+2sinx.cos^2x-sinx=0\)
\(\Leftrightarrow cos2x.cosx+2cos2x+sinx\left(2cos^2x-1\right)=0\)
\(\Leftrightarrow cos2x.cosx+2cos2x+sinx.cos2x=0\)
\(\Leftrightarrow cos2x\left(cosx+2+sinx\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos2x=0\\\sqrt{2}sin\left(x+\frac{\pi}{4}\right)=-2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=\frac{\pi}{2}+k\pi\\sin\left(x+\frac{\pi}{4}\right)=-\sqrt{2}< -1\left(vn\right)\end{matrix}\right.\)
\(\Rightarrow x=\frac{\pi}{4}+\frac{k\pi}{2}\)
GIẢi các phương trình lượng giác
\(\left|\cos x\right|-\left|\sin x\right|-\cos2x\times\sqrt{1+\sin2x}\)
\(\sqrt{5\sin x+\cos2x}=-2\cos x\)
\(2\cos(x-45^0)-\cos(x-45^0)\times\sin2x-3\sin2x+4=0\)
\(\sin4x+2=\cos3x+4\sin x+\cos x\)
\(\cos^4x-\sin^4x=\left|\cos x\right|+\left|\sin x\right|\)
Giải phương trình: \(\sin2x-\cos2x+3\sin x-\cos x-1=0\)
\(2sinx.cosx-cosx-\left(1-2sin^2x\right)+3sinx-1=0\)
\(\Leftrightarrow cosx\left(2sinx-1\right)+2sin^2x+3sinx-2=0\)
\(\Leftrightarrow cosx\left(2sinx-1\right)+\left(2sinx-1\right)\left(sinx+2\right)=0\)
\(\Leftrightarrow\left(2sinx-1\right)\left(cosx+2sinx-1\right)=0\)
\(\Leftrightarrow...\)