Những câu hỏi liên quan
KT
Xem chi tiết
AV
Xem chi tiết
NT
25 tháng 8 2021 lúc 21:23

Bài 2: 

Ta có: \(3n^3+10n^2-5⋮3n+1\)

\(\Leftrightarrow3n^3+n^2+9n^2+3n-3n-1-4⋮3n+1\)

\(\Leftrightarrow3n+1\in\left\{1;-1;2;-2;4;-4\right\}\)

\(\Leftrightarrow3n\in\left\{0;-3;3\right\}\)

hay \(n\in\left\{0;-1;1\right\}\)

Bình luận (0)
TN
Xem chi tiết
LM
30 tháng 8 2019 lúc 21:38

bài đâu

Bình luận (0)
TN
30 tháng 8 2019 lúc 22:27

đây là bài tập ngoài chương trình học trong sách

Bình luận (0)
DH
Xem chi tiết
NH
27 tháng 3 2018 lúc 18:45

ĐM con chó Mày giim hàng tao hơi bị kinh rồi đấy

Bình luận (0)
DT
Xem chi tiết
BG
Xem chi tiết
HN
Xem chi tiết
TH
26 tháng 8 2021 lúc 11:31

undefined

Bình luận (0)
NT
26 tháng 8 2021 lúc 14:41

a: Xét ΔABD và ΔHBD có 

BA=BH

\(\widehat{ABD}=\widehat{HBD}\)

BD chung

Do đó: ΔABD=ΔHBD

b: Ta có: ΔABD=ΔHBD

nên \(\widehat{BAD}=\widehat{BHD}\)

mà \(\widehat{BAD}=90^0\)

nên \(\widehat{BHD}=90^0\)

hay DH\(\perp\)BC

Bình luận (0)
KS
Xem chi tiết
NL
22 tháng 3 2023 lúc 9:52

a.

Do ABCD là hình chữ nhật \(\Rightarrow\widehat{HBA}=\widehat{CDB}\) (so le trong)

Xét hai tam giác HBA và CDB có:

\(\left\{{}\begin{matrix}\widehat{HBA}=\widehat{CDB}\left(cmt\right)\\\widehat{AHB}=\widehat{BCD}=90^0\end{matrix}\right.\) \(\Rightarrow\Delta HBA\sim\Delta CDB\left(g.g\right)\)

b.

Xét hai tam giác AHD và BAD có:

\(\left\{{}\begin{matrix}\widehat{ADB}\text{ chung}\\\widehat{AHD}=\widehat{BAD}=90^0\end{matrix}\right.\) \(\Rightarrow\Delta AHD\sim\Delta BAD\left(g.g\right)\)

\(\Rightarrow\dfrac{AD}{DB}=\dfrac{DH}{AD}\Rightarrow AD^2=DH.DB\)

c.

Áp dụng định lý Pitago cho tam giác vuông BAD:

\(DB=\sqrt{AD^2+AB^2}=\sqrt{BC^2+AB^2}=\sqrt{6^2+8^2}=10\left(cm\right)\)

Theo chứng minh câu b:

\(AD^2=DH.DB\Rightarrow DH=\dfrac{AD^2}{DB}=\dfrac{BC^2}{DB}=\dfrac{6^2}{10}=3,6\left(cm\right)\)

Áp dụng Pitago cho tam giác vuông AHD:

\(AH=\sqrt{AD^2-HD^2}=\sqrt{6^2-3,6^2}=4,8\left(cm\right)\)

Bình luận (0)
NL
22 tháng 3 2023 lúc 9:53

loading...

Bình luận (0)
H24
22 tháng 3 2023 lúc 9:55

( sử dụng thước vẽ lại cho chính xác nhé. )

a. xét tam giác HBA và tam giác CDB, ta có :

góc B là góc chung ( gt )

góc H = góc D = 90 độ

do đó : tam giác HBA đồng dạng tam giác CDB ( g - g )

b.

• AD/DB = DH/BC

mà BC = AD ( vì ABCD là hcn )

nên AD/BD = DH/AD

= AD . AD = DB . DH

=> AD^2 = DB . DH ( đpcm )

• vì AB = DC ( ABCD là hcn )

nên DC = 8 cm

áp dụng định lý pytago trong tam giác DBC vuông tại C, ta có:

DB^2 = BC^2 + CD^2

DB^2 = 8^2 + 6^2

DB^2 = 64 + 36

DB^2 = 100

DB = căn bậc 2 của 100

DB = 10 ( cm )

vậy DB = 10 cm

loading...  

Bình luận (1)
DM
Xem chi tiết