trong mp Oxy cho 3 điểm M(-4;1) N(2;4) P(2;-2) lần lượt là trung điểm BC CA AB của tam giac ABC
a) tìm toạ độ 3 đỉnh
Chứng minh tam giac ABC và MNP có cùng trọng tâm
Trong mp Oxy,cho 3 điểm A(3;-1),B(0;2),C(0;-4)
Dt ∆ABC bằng
Trong mp với hệ tọa đô Oxy cho hai điểm A(1;-2), B(-4;5). Tìm tọa độ điểm M trên trục Oy sao cho 3 điểm M,A,B thẳng hàng
Gọi \(M\left(0;m\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AM}=\left(-1;m+2\right)\\\overrightarrow{AB}=\left(-5;7\right)\end{matrix}\right.\)
3 điểm M;A;B thẳng hàng khi:
\(\dfrac{-1}{-5}=\dfrac{m+2}{7}\Rightarrow m=-\dfrac{3}{5}\)
\(\Rightarrow M\left(0;-\dfrac{3}{5}\right)\)
Trong mp Oxy , cho tam giác ABC với B(3;2) , C(-5;0) ; M và N lần lượt là trung điểm của AB và AC . Tọa độ của \(\overrightarrow{MN}\)là
A. ( -4; 3) B. ( 5; 3) C. ( -4; -1) D. ( 0; -1)
1) trong mp oxy. cho phép vị tự tâm i(2:3) tỉ số k=-2 biến điểm M (-7:2) thành M' có tọa độ là?
2) trong mp oxy . cho hai điểm M(4;6) và M'(-3:5) Phép vị tự tâm I tỉ số k =1/2 biến M thành M'. khi đó tọa độ I là ?
3) trong mp oxy cho ba điểm I(-2;-1),M(1;5) và M' (-1:1) giả sử v phép vị tự tâm I tỉ số k biến M thành M'.Khi đó giá trị của K là?
Câu 1:
Theo đề, ta có: \(\overrightarrow{IM'}=-2\cdot\overrightarrow{IM}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-2=-2\cdot\left(-7-2\right)=18\\y-3=-2\cdot\left(2-3\right)=2\end{matrix}\right.\Leftrightarrow M'\left(20;5\right)\)
trong mp Oxy, cho 2 điểm A(-1;1) và B(0;3)
tính giá trị m để điểm M(m+4; 2m+1) thẳng hàng với hai điểm A,B
\(\overrightarrow{AM}=\left(m+5;2m\right)\)
\(\overrightarrow{AB}=\left(1;2\right)\)
Để A,M,B thẳng hàng thì \(\dfrac{m+5}{1}=\dfrac{2m}{2}\)
=>m+5=m(loại)
Trong mp Oxy, cho M(–2;3). Hỏi M là ảnh của điểm nào trong các điểm sau qua phép đối xứng qua trục Oy
A.(3; 2)
B.(2;–3)
C.(3;–2)
D.(2;3)
Trong mp Oxy, cho 4 điểm A(5;2) , B(1;-6) , C(3;- 4) và D(7;- 4). Điểm I(4;-5) là trung điểm của đoạn thẳng nào sau đây?
A. BD B. BC C. AC D. CD
Trong mp Oxy, cho M(–2;3). Hỏi M là ảnh của điểm nào trong các điểm sau qua phép đối xứng qua đường thẳng x + y = 0?
A. (–3;2)
B. (3; 2)
C. (2;3)
D.(–2;3)
Đáp án A
Đường thẳng đi qua M và vuông góc với đường thẳng x + y = 0 có vectơ pháp tuyến n → ( 1 ; − 1 )
Phương trình đường thẳng Δ : ( x + 2 ) − ( y − 3 ) = 0 ⇒ x − y + 5 = 0
d
∩
Δ
=
I
−
5
2
;
5
2
⇒
M
'
(
−
3
;
2
)
Trong mặt phẳng tọa độ Oxy,cho điểm N (5;-3), P(1;0) và M tùy ý. Khi đó \(\overrightarrow{MN}-\overrightarrow{MP}\) có tọa độ là
Lời giải:
$\overrightarrow{MN}-\overrightarrow{MP}=\overrightarrow{PN}=(x_N-x_P, y_N-y_P)=(4, -3)$
trong mp tọa độ Oxy, cho đg thg d: 2x-y+3=0 và 2 điểm A(1;0); B(2;1). tìm điểm M trên d sao cho MA+MB nhỏ nhất
Thay tọa độ A và B vào d thấy kết quả cùng dấu \(\Rightarrow\) A và B nằm cùng phía so với d
Gọi C là điểm đối xứng A qua d \(\Rightarrow MA=CM\Rightarrow MA+MB=CM+MB\ge CB\)
\(\Rightarrow MA+MB\) nhỏ nhất khi M;B;C thẳng hàng hay M là giao điểm của đường thẳng BC và d
Phương trình d' qua A và vuông góc d có dạng:
\(1\left(x-1\right)+2\left(y-0\right)=0\Leftrightarrow x+2y-1=0\)
D là giao điểm d và d' \(\Rightarrow\left\{{}\begin{matrix}x+2y-1=0\\2x-y+3=0\end{matrix}\right.\) \(\Rightarrow D\left(-1;1\right)\)
C đối xứng A qua d khi và chỉ khi D là trung điểm AC \(\Rightarrow C\left(-3;1\right)\)
\(\Rightarrow\overrightarrow{CB}=\left(5;0\right)=5\left(1;0\right)\Rightarrow\) phương trình BC có dạng:
\(0\left(x-2\right)+1\left(y-1\right)=0\Leftrightarrow y-1=0\)
M là giao điểm d và BC nên tọa độ thỏa mãn: \(\left\{{}\begin{matrix}y-1=0\\2x-y+3=0\end{matrix}\right.\) \(\Rightarrow M\left(-\frac{3}{2};1\right)\)