Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
HD
Xem chi tiết
H24
Xem chi tiết
TA
Xem chi tiết
H24
12 tháng 8 2020 lúc 12:29

Đây mà là tiếng việt lớp 3 à

Bình luận (0)
 Khách vãng lai đã xóa
RV
Xem chi tiết
NL
Xem chi tiết
NT
27 tháng 1 2020 lúc 20:43

Hỏi đáp Toán

Bình luận (0)
 Khách vãng lai đã xóa
NT
27 tháng 1 2020 lúc 20:59

Hỏi đáp Toán

Bình luận (0)
 Khách vãng lai đã xóa
NT
27 tháng 1 2020 lúc 20:48

Hỏi đáp Toán

Bình luận (0)
 Khách vãng lai đã xóa
HQ
Xem chi tiết
TP
8 tháng 9 2019 lúc 21:55

Áp dụng BĐT Cô-si :

\(\frac{1}{xy}\ge\frac{1}{\frac{\left(x+y\right)^2}{4}}\ge\frac{1}{\frac{1}{4}}=4\)

Do đó BĐT cần chứng minh \(\Leftrightarrow8\left(x^4+y^4\right)+4\ge5\)

Ta cần chứng minh BĐT sau là đủ : \(8\left(x^4+y^4\right)\ge1\)

Thật vậy: Áp dụng BĐT Cô-si :

\(x^4+\frac{1}{16}\ge\frac{x^2}{2};y^4+\frac{1}{16}\ge\frac{y^2}{2}\)

Cộng vế : \(x^4+y^4+\frac{1}{8}\ge\frac{x^2+y^2}{2}\ge\frac{\frac{\left(x+y\right)^2}{2}}{2}\ge\frac{\frac{1}{2}}{2}=\frac{1}{4}\)

\(\Leftrightarrow x^4+y^4\ge\frac{1}{4}-\frac{1}{8}=\frac{1}{8}\)

\(\Leftrightarrow8\left(x^4+y^4\right)\ge1\)

Ta có đpcm.

Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)

Bình luận (0)
NM
Xem chi tiết
HM
Xem chi tiết
KN
25 tháng 12 2019 lúc 19:23

Ta có: \(\left(x-y\right)^2\ge0\)

\(\Rightarrow x^2-2xy+y^2\ge0\)

\(\Rightarrow x^2+2xy+y^2\ge4xy\)

\(\Rightarrow\left(x+y\right)^2\ge4xy\)

\(\Rightarrow\frac{1}{xy}\ge\frac{4}{\left(x+y\right)^2}\)(đpcm)

Bình luận (0)
 Khách vãng lai đã xóa
H24
25 tháng 12 2019 lúc 15:38

Ta có vì : x,y > 0

và \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)

Từ đề bài ta có:

\(\Leftrightarrow\frac{x+y}{xy}\ge\frac{4}{x+y}\)

\(\Leftrightarrow\frac{x+y}{xy}.\left(x+y\right).xy\ge\frac{4}{x+y}.xy\left(x+y\right)\)

Áp dụng đẳng thức Cô-si:

\(\Leftrightarrow x^2+2xy+y^2\ge4xy\)

\(\Leftrightarrow x^2-2xy+y^2\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\ge0\)(luôn đúng)

Vậy....

đpcm.

Bình luận (0)
 Khách vãng lai đã xóa
LN
Xem chi tiết