chứng minh rằng
\(C^0_{2n}+2^2C^2_{2n}+...+2^{2n}C^n_{2n}=\frac{3^{2n}+1}{2}\)
Tính tổng: a) \(S=2C^2_{2n}+4C^4_{2n}+6C^6_{2n}+...+2nC^{2n}_{2n}\)
b) \(S=\dfrac{1}{2}C^0_{2n}+\dfrac{1}{4}C^2_{2n}+\dfrac{1}{6}C^4_{2n}+...+\dfrac{1}{2n+2}C^{2n}_{2n}\)
Chứng minh rằng:
\(C^0_{2n}+C^1_{2n}+C^2_{2n}+...+C^{2n}_{2n}=4^n\)
Xét khai triển: \(\left(x+1\right)^{2n}=C_{2n}^0+C_{2n}^1x+C_{2n}^2x^2+...+C_{2n}^{2n}x^{2n}\)
Thay \(x=1\) ta được:
\(2^{2n}=C_{2n}^0+C_{2n}^1+...+C_{2n}^{2n}\)
\(\Leftrightarrow4^n=C_{2n}^0+C_{2n}^1+...+C_{2n}^{2n}\)
Rút gọn: \(S=C^0_{2n} +3^2C^2_{2n}+3^4C^4_{2n}+...+3^{2n}C^{2n}_{2n}\)
Chứng minh rằng :
\(C_{2n}^0+C^2_{2n}+...+C^{2n}_{2n}=C^1_{2n}+C^3_{2n}+...+C^{2n-1}_{2n}\)
Xét khai triển:
\(\left(x-1\right)^{2n}=C_{2n}^0-C_{2n}^1x+C_{2n}^2x^2-C_{2n}^3x^3+...-C_{2n}^{2n-1}x^{2n-1}+C_{2n}^{2n}x^{2n}\)
Thay \(x=1\) ta được:
\(0=C_{2n}^0-C_{2n}^1+C_{2n}^2-C_{2n}^3+..-C_{2n}^{2n-1}+C_{2n}^{2n}\)
\(\Leftrightarrow C_{2n}^0+C_{2n}^2+...+C_{2n}^{2n}=C_{2n}^1+C_{2n}^3+...+C_{2n}^{2n-1}\)
tìm hệ số của số hạng chứa x26 trong khai triển nhị thức niuton của :
\(\left(\frac{1}{x^4}+x^7\right)^n\) biết rằng \(C^1_{2n+1}+C^2_{2n+1}+....+C^n_{2n+1}=2^{20}-1\)
HELP!................ ai trả lời nhanh và đúng nhất mình sẽ tích 3 lần
\(\sum_{k=1}^nC^k_{2n+1}=2^{20}-1\)
\(\frac{\sum_{k=1}^n\left(2C^k_{2n+1}\right)+1+1}{2}=2^{20}\)
\(C^0_{2n+1}+\sum_{k=1}^n\left(C^k_{2n+1}+C_{2n+1}^{2n+1-k}\right)+C^{2n+1}_{2n+1}=2^{21}\)
\(\sum_{k=0}^{2n+1}C^k_{2n+1}=2^{21}\)
\(\Rightarrow2n+1=21\Rightarrow n=10\)
Số hạng chứa \(x^{26}\) có dạng là:
\(C^k_{10}.\left(\frac{1}{x^4}\right)^k.\left(x^7\right)^{10-k}\Rightarrow-4k+7.\left(10-k\right)=26\)
\(\Rightarrow k=4\)
hệ số của \(x^{26}\) là:
\(C^4_{10}=210\)
12, tìm hệ số x26trong khai triển : \(\left(1+x^7\right)^n\), x khác 0 biết :
\(C^1_{2n+1}+C^2_{2n+1}+...+C^n_{2n+1}=2^{20}-1\)
tìm hệ số x6 trong khai triển (x2-x-1)n thành đa thức. Trong đó n là số nguyên dương thỏa mãn: \(C_{2n+1}^1+C^2_{2n+1}+...+C^n_{2n+1}=2^{20}-1\)
chỉ mk cách làm với @Nguyễn Việt Lâm
Xét khai triển:
\(\left(x+1\right)^{2n+1}=C_{2n+1}^0+C_{2n+1}^1x+C_{2n+1}^2x^2+...+C_{2n+1}^{2n+1}x^{2n+1}\)
Cho \(x=1\) ta được:
\(2^{2n+1}=C_{2n+1}^0+C_{2n+1}^1+C_{2n+1}^2+...+C_{2n+1}^{2n+1}\)
\(=1+C_{2n+1}^1+C_{2n+1}^2+...+C_{2n+1}^n+C_{2n+1}^{n+1}+...+C_{2n+1}^{2n}+1\)
\(=1+C_{2n+1}^1+...+C_{2n+1}^n+C_{2n+1}^n+...+C_{2n+1}^1+1\)
\(=2\left(1+C_{2n+1}^1+C_{2n+1}^2+...+C_{2n+1}^n\right)\)
\(\Rightarrow2^{2n}-1=C_{2n+1}^1+C_{2n+1}^2+...+C_{2n+1}^n\)
\(\Rightarrow2^{2n-1}=2^{20}-1\Rightarrow2n=20\Rightarrow n=10\)
Khai triển: \(\left(x^2-x-1\right)^{10}\)
\(\left\{{}\begin{matrix}k_0+k_1+k_2=10\\k_1+2k_2=6\end{matrix}\right.\) \(\Rightarrow\left(k_0;k_1;k_2\right)=\left(4;6;0\right);\left(5;4;1\right);\left(6;2;2\right);\left(7;0;3\right)\)
Hệ số của \(x^6:\)
\(\frac{10!}{4!.6!}+\frac{10!}{5!.4!}.\left(-1\right)^5+\frac{10!}{6!.2!.2!}+\frac{10!}{7!.3!}.\left(-1\right)^7\)
Lướt một hồi tar thấy bài này hay hay trên hoc.24 nên giúp cái há :)
Cho a,b,c là ba số thực không âm và không có 2 số nào cùng bằng 0. Chứng minh rằng với mọi số nguyên n thì
\(\frac{a^{2n}+b^{2n}}{a^{2n}+b^{2n}}+\frac{b^{2n}+c^{2n}}{b^{2n}+a^{2n}}+\frac{c^{2n}+a^{2n}}{c^{2n}+b^{2n}}\ge\frac{a+b}{a+c}+\frac{b+c}{b+a}+\frac{c+a}{c+b}\)
xin lỗi bài này ẻm ko biết làm
Sử dụng đồng nhất thức \(k^2=C^1_k+2C^2_k\) để chứng minh rằng :
\(1^2+2^2+....+n^2=\sum\limits^n_{k=1}C^1_k+2\sum\limits^n_{k=2}C^2_k=\dfrac{n\left(n+1\right)\left(2n+1\right)}{6}\)
Ta có \(A=\sum\limits^n_{k=1}k^2=\sum\limits^n_{k=1}C^1_k+2\sum\limits^n_{k=1}C^2_k\)
Kết hợp với bài 2.15 ta được :
\(A=C_{n+1}^2+2C^3_{n+1}=\dfrac{n\left(n+1\right)}{2}+\dfrac{\left(n-1\right)n\left(n+1\right)}{3}=\dfrac{n\left(n+1\right)\left(2n+1\right)}{6}\)