Bài 2: Hoán vị, chỉnh hợp, tổ hợp

SK

Sử dụng đồng nhất thức \(k^2=C^1_k+2C^2_k\) để chứng minh rằng :

             \(1^2+2^2+....+n^2=\sum\limits^n_{k=1}C^1_k+2\sum\limits^n_{k=2}C^2_k=\dfrac{n\left(n+1\right)\left(2n+1\right)}{6}\)

NH
18 tháng 5 2017 lúc 16:52

Ta có \(A=\sum\limits^n_{k=1}k^2=\sum\limits^n_{k=1}C^1_k+2\sum\limits^n_{k=1}C^2_k\)

Kết hợp với bài 2.15 ta được :

\(A=C_{n+1}^2+2C^3_{n+1}=\dfrac{n\left(n+1\right)}{2}+\dfrac{\left(n-1\right)n\left(n+1\right)}{3}=\dfrac{n\left(n+1\right)\left(2n+1\right)}{6}\)

Bình luận (0)

Các câu hỏi tương tự
NN
Xem chi tiết
NN
Xem chi tiết
NL
Xem chi tiết
NT
Xem chi tiết
NM
Xem chi tiết
ND
Xem chi tiết
LC
Xem chi tiết
DH
Xem chi tiết
SK
Xem chi tiết