Những câu hỏi liên quan
VT
Xem chi tiết
JY
5 tháng 6 2015 lúc 13:14

 

ABCHbc

Trong tam giác vuông ACH có AC2 = AH2 + CH2 = AH2 + (BC - BH)= AH2 + BC2 - 2.BC.BH + BH2

Trong tam giác vuông ABH có AH2 + BH2 = AB2 và BH = AB.cosB hay BH = c.cosB

Suy ra AC2 = BC2 + AB2 - 2BC.c.cosB hay b2 = a2 + c2 - 2ac.cosB

 
Bình luận (0)
LK
Xem chi tiết
PT
Xem chi tiết
TM
Xem chi tiết
NT
9 tháng 10 2021 lúc 21:37

b: Xét ΔABH vuông tại H và ΔACK vuông tại K có

AB=AC

\(\widehat{A}\) chung

Do đó: ΔABH=ΔACK

Bình luận (0)
LN
Xem chi tiết
LT
27 tháng 6 2021 lúc 10:58

từ B kẻ đường thẳng vuông góc với AC tại k

ta có: 2.AK.b=AK.b+AK.b           

=AK.(AK+CK)+(b-CK).b

=AK^2+AK.CK+b^2-b.CK

=c^2-BK^2+b^2-CK.(b-AK)

=c^2-(a^2-CK^2)+b^2-CK.CK

=c^2-a^2+CK^2+b^2-CK^2

=b^2+c^2-a^2

mà: cosA=AK/c=2.AK.b/2bc

=(b^2+c^2-a^2)/2bc

=>b^2+c^2-a^2=2bc.cosA (đpcm)

 

Bình luận (1)
TT
Xem chi tiết
H24
5 tháng 4 2021 lúc 20:19

a) Xét tam giác ABC và tam giác HAC có:

BAC = AHC =90 

ABC = HAC (cùng phụ với HAB) 

=> ABC đồng dạng HAC (g.g)

b) Vì ABC đồng dạng HAC

=> AB/BC = AH/AC

=> AB.AC=BC.AH

c) Vì AB.AC = BC.AH

=> AB^2.AC^2= BC^2 . AH^2

Mà BC^2=AB^2+AC^2 (định lý pytago ở tam giác ABC vuông tại A)

=> AB^2.AC^2= (AB^2+AC)^2.AH^2

=> 1/AH^2 =1/AB^2 +1/AC^2

Bình luận (0)
AD
Xem chi tiết
CC
Xem chi tiết
TT
29 tháng 8 2015 lúc 5:00

Kẻ CE vuông góc với AB, ta có ngay tam giác ACE vuông có một góc nhọn 60. Suy ra \(AE=\frac{1}{2}AC=\frac{b}{2},CE=\frac{\sqrt{3}}{2}b\). Xét tam giác vuông EBC có '\(EB=c+\frac{b}{2},EC=\frac{\sqrt{3}}{2}b\to a^2=BC^2=BE^2+CE^2=\left(c+\frac{b}{2}\right)^2+\left(\frac{\sqrt{3}}{2}b\right)^2=c^2+bc+b^2\)

Bình luận (0)
TV
15 tháng 8 2019 lúc 10:49

đáp án 

=c2 + bc + b2

hok tót

Bình luận (0)
OC
15 tháng 8 2019 lúc 10:50

trả lời 

= c2+ bc + b2

hok tốt

Bình luận (0)
LT
Xem chi tiết
KL
3 tháng 1 2024 lúc 15:40

loading... a) Do M là trung điểm của AB (gt)

⇒ AM = BM = AB : 2 = 6 : 2 = 3 (cm)

Do N là trung điểm của BC (gt)

⇒ BN = CN = BC : 2 = 8 : 2 = 4 (cm)

Ta có:

BM/AM = 3/3 = 1

BN/CN = 4/4 = 1

⇒ BM/AM = BN/CN

⇒ MN // AC (định lý Ta-lét)

b) Ta có:

AM.BC = 3.8 = 24 (cm)

AB.BN = 6.4 = 24 (cm)

⇒ AM.BC = AB.BN

c) Do BP là tia phân giác của ∠ABC (gt)

⇒ BA/BC = PA/PC (1)

Do MN // AC (cmt)

⇒ BA/BC = AM/CN (2)

Từ (1) và (2) ⇒ AM/CN = PA/PC

Bình luận (0)