Những câu hỏi liên quan
H24
Xem chi tiết
LP
Xem chi tiết
DQ
Xem chi tiết
AN
18 tháng 8 2016 lúc 10:51

Đề còn gì nữa không bạn chớ chỉ vầy thì biết bao nhiêu nghiệm mà kể

Bình luận (0)
DQ
18 tháng 8 2016 lúc 21:04

tìm x , y nguyên.

Bình luận (0)
LT
Xem chi tiết
NA
7 tháng 6 2018 lúc 8:00

Viết được bao nhiêu chữ số có 3 chữ số mà mỗi số chỉ có duy nhất 1 chữ số 4? 

Bình luận (0)
LL
7 tháng 6 2018 lúc 8:32

mình k'o hiểu lắm . Nếu mình thì mình đã giúp bạn rồi .Cho mình xin lỗi

Bình luận (0)
BA
Xem chi tiết
H24
24 tháng 3 2019 lúc 10:52

nhân  chéo 2 vế sẽ thành hpt đẳng cấp

\(2\left(x^2+2xy+3y^2\right)=9\left(2x^2+2xy+y^2\right)\)

\(\Leftrightarrow2x^2+4xy+6y^2=18x^2+18xy+9y^2\)

\(\Leftrightarrow16x^2+14xy+3y^2=0\)

\(\Leftrightarrow\left(8x+3y\right)\left(2x+y\right)=0\)

Bình luận (0)
SN
Xem chi tiết
HD
1 tháng 1 2018 lúc 10:06

1. Đề này là 18 chứ không phải 15 nhé

\(\left\{{}\begin{matrix}\sqrt{x^2+x+y+1}+x+\sqrt{y^2+x+y+1}+y=18\left(1\right)\\\sqrt{x^2+x+y+1}-x+\sqrt{y^2+x+y+1}-y=2\left(2\right)\end{matrix}\right.\)

Lấy (1) + (2) và (1) - (2) ta được hệ mới

\(\left\{{}\begin{matrix}\sqrt{x^2+x+y+1}+\sqrt{y^2+x+y+1}=10\\x+y=8\end{matrix}\right.\)

\(\Rightarrow x=8-y\)

\(\Rightarrow\sqrt{x^2+9}+\sqrt{y^2+9}=10\)\(\Leftrightarrow\sqrt{x^2+9}=10-\sqrt{y^2+9}\)

\(\Leftrightarrow\left\{{}\begin{matrix}10-\sqrt{y^2+9}>0\\x^2+9=100-20\sqrt{y^2+9}+y^2+9\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}10-\sqrt{y^2+9}>0\\x^2=100-20\sqrt{y^2+9}+y^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}10-\sqrt{y^2+9}>0\\\left(8-y\right)^2=100-20\sqrt{y^2+9}+y^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}10-\sqrt{y^2+9}>0\\9y^2-72y+144=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=4\\y=4\end{matrix}\right.\)

Bình luận (3)
HD
1 tháng 1 2018 lúc 10:28

2. Dễ thấy x = y = 0 không phải là nghiệm của phương trình

HPT\(\Leftrightarrow\left\{{}\begin{matrix}1-\dfrac{12}{y+3x}=\dfrac{2}{\sqrt{x}}\left(1\right)\\1+\dfrac{12}{y+3x}=\dfrac{6}{\sqrt{y}}\left(2\right)\end{matrix}\right.\)

Lấy (1) + (2) ; (1) - (2) ta được

\(\left\{{}\begin{matrix}1=\dfrac{1}{\sqrt{x}}+\dfrac{3}{\sqrt{y}}\left(3\right)\\\dfrac{12}{y+3x}=\dfrac{3}{\sqrt{y}}-\dfrac{1}{\sqrt{x}}\left(4\right)\end{matrix}\right.\)

Lấy ( 3) nhân (4)

\(\dfrac{12}{y+3x}=\dfrac{9}{y}-\dfrac{1}{x}=\dfrac{9x-y}{xy}\)

\(\Leftrightarrow27x^2-6xy-y^2=0\Leftrightarrow\left(9x+y\right)\left(3x-y\right)=0\)

\(\Rightarrow y=3x\)

đến đây thì dễ rồi

Bình luận (0)
HD
1 tháng 1 2018 lúc 10:34

3. Đây là hệ đối xứng loại I

\(\left\{{}\begin{matrix}\left(x+y\right)^3-3xy\left(x+y\right)=8\\\left(x+y\right)+2xy=2\end{matrix}\right.\)

Đặt S = a + b ; P = ab (\(S^2\ge4P\) )

xong giải ra thôi mà

Bình luận (0)
RZ
Xem chi tiết
VH
22 tháng 2 2020 lúc 15:46

Cầm máy tính ra giải là xong

Bình luận (0)
 Khách vãng lai đã xóa
RZ
22 tháng 2 2020 lúc 15:55

???????????????????????????????

Bình luận (0)
 Khách vãng lai đã xóa
VH
22 tháng 2 2020 lúc 16:06

Ta có hệ pt: \(\hept{\begin{cases}x^2+2xy+3y^2=9\\2x^2+2xy+y^2=2\end{cases}}\)

\(\Leftrightarrow9-2=x^2+2xy+3y^2-2x^2-2xy-y^2\)

\(\Leftrightarrow-x^2+2y^2=7\)

Đến đây thì tịt rồi hihi( mình mới lớp 8)

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
PQ
12 tháng 12 2020 lúc 21:00

Ta có: \(\left\{{}\begin{matrix}x^4+2x^3y+x^2y^2=2x+9\\x^2+2xy=6x+6\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\left(x^2+xy\right)^2=2x+9\\x^2+2xy=6x+6\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x^2+xy\right)^2=2x+9\\xy=3x+3-\dfrac{x^2}{2}\end{matrix}\right.\) \(\Rightarrow\left(\dfrac{x^2}{2}+3x+3\right)^2=2x+9\)( đến đây là phương trình 1 ẩn rồi, tự giải tiếp)

 

Bình luận (0)
PA
Xem chi tiết
H9
12 tháng 7 2023 lúc 9:51

a) \(x^2+2xy^3-3z+4xy-5xy^2+2xy-5z\)

\(=x^2+2xy^3-5xy^2-\left(3z+5z\right)+\left(4xy+2xy\right)\)

\(=x^2+2xy^3-5xy^2-8z+6xy\)

b) \(\left(x-3y\right)\left(x^2-3xy+9y^2\right)\)

\(=\left(x-3y\right)\left[x^2-x\cdot3y+\left(3y\right)^2\right]\)

\(=x^3-\left(3y\right)^3\)

\(=x^3-27y^3\)

c) \(\left(2x-y\right)\left(2x+y\right)\)

\(=\left(2x\right)^2-y^2\)

\(=4x^2-y^2\)

d) \(\left(3x-y\right)\left(2y+5\right)-16x4y\)

\(=6xy+15x-2y^2-5y-64xy\)

\(=-58xy+15x-2y^2-5y\)

Bình luận (0)
NT
12 tháng 7 2023 lúc 9:51

Bạn xem lại đề bài nhé!

Bình luận (0)