Chương 3: PHƯƠNG TRÌNH, HỆ PHƯƠNG TRÌNH

H24

Giải hệ phương trình \(\left\{{}\begin{matrix}x^4+2x^3y+x^2y^2=2x+9\\x^2+2xy=6x+6\end{matrix}\right.\)

PQ
12 tháng 12 2020 lúc 21:00

Ta có: \(\left\{{}\begin{matrix}x^4+2x^3y+x^2y^2=2x+9\\x^2+2xy=6x+6\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\left(x^2+xy\right)^2=2x+9\\x^2+2xy=6x+6\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x^2+xy\right)^2=2x+9\\xy=3x+3-\dfrac{x^2}{2}\end{matrix}\right.\) \(\Rightarrow\left(\dfrac{x^2}{2}+3x+3\right)^2=2x+9\)( đến đây là phương trình 1 ẩn rồi, tự giải tiếp)

 

Bình luận (0)

Các câu hỏi tương tự
KR
Xem chi tiết
TN
Xem chi tiết
NL
Xem chi tiết
PT
Xem chi tiết
DV
Xem chi tiết
KR
Xem chi tiết
NL
Xem chi tiết
LM
Xem chi tiết
NH
Xem chi tiết