Tìm GTLN của \(y =2x^2-x^3\) ( với \(0\le x\le2\) )
Với \(-2\le x\le2\) tìm GTLN của biểu thức A = \(x^2-2x+7\)
`-2<=x<=2`
`<=>x+2>=0,x-2<=0`
`=>(x+2)(x-2)<=0`
`<=>x^2-4<=0`
`<=>x^2<=4`
`=>A<=4-2x+7=11-2x`
Vì `x>=-2=>2x>=-4`
`=>A<=11+4=15`
Dấu "=" xảy ra khi `x=-2
`-2<=x<=2`
`<=>x+2>=0,x-2<=0`
`=>(x+2)(x-2)<=0`
`<=>x^2-4<=0`
`<=>x^2<=4`
`=>A<=4-2x+7=11-2x`
Vì `x>=-2=>2x>=-4`
`=>A>=11+4=15`
Dấu "=" xảy ra khi `x=-2`
Tìm GTLN của hàm số \(y=x\sqrt{4-x^2}\), với \(-2\le x\le2\).
\(x\sqrt{4-x^2}\le\dfrac{x^2+4-x^2}{2}=2\)
với x,y là những số thực thoả mãn điều kiện :\(0< x\le y\le2\) và \(2x+y\ge2xy\).TÌm GTLN của biểu thức:
\(P=x^2\left(x^2+1\right)+y^2\left(y^2+1\right)\)
Tìm GTLN của biểu thức:
a) A=\(x^2+y^2+z^2\) với \(-1\le x,y,z\le2\) và x+y+z\(\le3\)
Giúp mình bài này, thanks trước
Với x, y là số thực thỏa \(0< x\le y\le2\), \(2x+y\ge2xy\). Tìm GTLN của bt
\(P=x^2\left(x^2+1\right)+y^2\left(y^2+1\right)\)
Tìm GTLN của hàm số sau: \(f\left(x\right)=\left(2-x\right)\left(x+3\right);-3\le x\le2\)
\(f\left(x\right)=\left(2-x\right)\left(x+3\right)\le\dfrac{1}{4}\left(2-x+x+3\right)^2=\dfrac{25}{4}\)
\(f\left(x\right)_{max}=\dfrac{25}{4}\) khi \(x=\dfrac{5}{2}\)
Cho x, y thỏa mãn \(0< x\le y\le2\) và \(2x+y\ge2xy\)
Tìm GTLN của
P = \(x^2\left(x^2+1\right)+y^2\left(y^2+1\right)\)
Với x, y là những số thực thoả mãn các điều kiện: \(0< x\le y\le2\) và \(2x+y\ge2xy\). tìm GTLN của biểu thức:
\(P=x^2\left(x^2+1\right)+y^2\left(y^2+1\right)\)
\(A=x^2+y^2+z^2\)
x+y+z=3
\(0\le x,y,z\le2\)
GTLN
\(A=x^2+y^2+z^2\le\left(x+y+z\right)^2=9\)
gtln của A = 9
Với \(x=y=z=1\)
easy không ? =)
Có 0 <= x,y,z => xyz >= 0
Có x,y,z <=2 => (2-x)(2-y)(2-z)>=0 => 8 - 4(x+y+z) + 2(xy+yz+zx) -xyz >=0
Từ đó => 8 - 4(a+b+c) +2(ab+bc+ca)>=0
=> 8 - 4(a+b+c) + (a+b+c)^2 >= a^2+b^2+c^2
=> 8 -4.3 +3^2 >=A (vì x+y+z=3)
=> 5>= A
Dấu "=" xảy ra khi x=2,y=1,z=0
Vậy Max A =5 khi x=2,y=1,z=0