Những câu hỏi liên quan
HT
Xem chi tiết
NT
10 tháng 10 2023 lúc 14:51

loading...  

Bình luận (0)
KL
10 tháng 10 2023 lúc 14:54

h) x/y = 9/10 ⇒  y/10 = x/9

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

y/10 = x/9 = (y - x)/(10 - 9) = 120/1 = 120

*) x/9 = 120 ⇒ x = 120.9 = 1080

*) y/10 = 120 ⇒ y = 120.10 = 1200

Vậy x = 1080; y = 1200

k) x/y = 3/4

⇒ x/3 = y/4

⇒ 5y/20 = 3x/9

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

5y/20 = 3x/9 = (5y - 3x)/(20 - 9) = 33/11 = 3

*) 3x/9 = 3 ⇒ x = 3.9:3 = 9

*) 5y/20 = 3 ⇒ y = 3.20:5 = 12

Vậy x = 9; y = 12

Bình luận (0)
Vi
Xem chi tiết
AH
29 tháng 12 2022 lúc 18:37

Lời giải:

 $\frac{x}{y}=\frac{2}{3}\Rightarrow \frac{x}{2}=\frac{y}{3}$. Đặt $\frac{x}{2}=\frac{y}{3}=k$ thì:

$x=2k; y=3k$

Khi đó: $3x-2y=3.2k-3.2k=0$. Mẫu số không thể bằng $0$ nên $A$ không xác định. Bạn xem lại.

$B=\frac{2(2k)^2-2k.3k+3(3k)^2}{3(2k)^2+2.2k.3k+(3k)^2}=\frac{29k^2}{33k^2}=\frac{29}{33}$

Bình luận (0)
PT
Xem chi tiết
PP
4 tháng 10 2024 lúc 20:19

1,7y

Bình luận (0)
PY
Xem chi tiết
LN
21 tháng 9 2017 lúc 5:23

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\Leftrightarrow\dfrac{x}{2}=\dfrac{2y}{6}=\dfrac{3z}{12}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{2}=\dfrac{2y}{6}=\dfrac{3z}{12}=\dfrac{x+2y-3z}{2+6-12}=\dfrac{-20}{-4}=5\)

\(\Rightarrow\left\{{}\begin{matrix}x=5.2=10\\y=5.3=15\\z=5.4=20\end{matrix}\right.\)

\(\dfrac{x}{y}=\dfrac{3}{4}\Leftrightarrow\dfrac{x}{3}=\dfrac{y}{4}\)

\(\Rightarrow\dfrac{-3x}{-9}=\dfrac{5y}{20}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{-3x}{-9}=\dfrac{5y}{20}=\dfrac{-3x+5y}{-9+20}=\dfrac{33}{11}=3\)

\(\Rightarrow\left\{{}\begin{matrix}x=3.3=9\\y=3.4=12\end{matrix}\right.\)

Bình luận (1)
NL
20 tháng 9 2017 lúc 20:38

1a)

Bình luận (2)
NL
20 tháng 9 2017 lúc 20:40

bạn sai đè rồi

Bình luận (0)
NA
Xem chi tiết
H24
Xem chi tiết
MY
16 tháng 7 2021 lúc 13:29

a, \(3x=5y=7z=>\dfrac{3x}{105}=\dfrac{5y}{105}=\dfrac{7z}{105}=>\dfrac{x}{35}=\dfrac{y}{21}=\dfrac{z}{15}\)

áp dụng tính chất dãy tỉ số = nhau

\(=>\dfrac{x}{35}=\dfrac{y}{21}=\dfrac{z}{15}=\dfrac{x+y+z}{35+21+15}=\dfrac{10}{71}\)

\(=>\dfrac{x}{35}=\dfrac{10}{71}=>x=\dfrac{350}{71}\)

\(=>\dfrac{y}{21}=\dfrac{10}{71}=>y=\dfrac{210}{71}\)

\(=>\dfrac{z}{15}=\dfrac{10}{71}=>z=\dfrac{150}{71}\)

b, \(\)\(6x=5y=>\dfrac{x}{5}=\dfrac{y}{6}=>\dfrac{x}{20}=\dfrac{y}{24}\)

có \(7y=8z=>\dfrac{y}{8}=\dfrac{z}{7}=>\dfrac{y}{24}=\dfrac{z}{21}\)

\(=>\dfrac{x}{20}=\dfrac{y}{24}=\dfrac{z}{21}=>\dfrac{3x}{60}=\dfrac{2y}{48}=\dfrac{4z}{84}\)

áp dụng t/c dãy tỉ số = nhau

\(=>\dfrac{3x}{60}=\dfrac{2y}{48}=\dfrac{4z}{84}=\dfrac{3x+2y+4z}{60+48+84}=\dfrac{12}{192}=\dfrac{1}{16}\)

\(=>\dfrac{3x}{60}=\dfrac{1}{16}=>x=1,25\)

\(=>\dfrac{2y}{48}=\dfrac{1}{16}=>y=1,5\)

\(=>\dfrac{4z}{84}=\dfrac{1}{16}=>z=1,3125\)

c, \(x:y:z=1:2:3=>\dfrac{x}{1}=\dfrac{y}{2}=\dfrac{z}{3}\)

\(=>x=\dfrac{y}{2},z=\dfrac{3y}{2}\)

thay x,z vào \(x^3+y^3+z^3=36=>\left(\dfrac{y}{2}\right)^3+y^3+\left(\dfrac{3y}{2}\right)^3=36\)

\(=>y=2\)

\(=>x=\dfrac{y}{2}=\dfrac{2}{2}=1,z=\dfrac{3y}{2}=\dfrac{3.2}{2}=3\)

d, \(\dfrac{x}{2}=\dfrac{y}{3}=>x=\dfrac{2y}{3}\)

thay x vào \(3x^3+y^3=51=>3.\left(\dfrac{2y}{3}\right)^3+y^3=51=>y=3\)

\(=>x=\dfrac{2.3}{3}=2\)

 

 

Bình luận (1)
TL
Xem chi tiết
NT
16 tháng 12 2022 lúc 13:29

f: \(=\dfrac{5x-3-x+3}{4x^2y}=\dfrac{4x}{4x^2y}=\dfrac{1}{xy}\)

g: \(=\dfrac{3x+10-x-4}{x+3}=\dfrac{2x+6}{x+3}=2\)

h: \(=\dfrac{4-2+x}{x-1}=\dfrac{x+2}{x-1}\)

n: \(=\dfrac{3x-x+6}{x\left(x+3\right)}=\dfrac{2\left(x+3\right)}{x\left(x+3\right)}=\dfrac{2}{x}\)

p: \(=\dfrac{x^2-9-x^2+9}{x\left(x-3\right)}=0\)

k: \(=\dfrac{x-2x-4+x-2}{\left(x+2\right)\left(x-2\right)}=\dfrac{-6}{x^2-4}\)

m: \(=\dfrac{3x-x+6}{x\left(2x+6\right)}=\dfrac{2x+6}{x\left(2x+6\right)}=\dfrac{1}{x}\)

Bình luận (0)
H24
Xem chi tiết
MH
15 tháng 9 2021 lúc 16:04

\(2x=3y\text{⇒}\dfrac{x}{3}=\dfrac{y}{2}\text{⇒}\dfrac{x}{21}=\dfrac{y}{14}\)

\(5y=7z\text{⇒}\dfrac{y}{7}=\dfrac{z}{5}\text{⇒}\dfrac{y}{14}=\dfrac{z}{10}\)

\(\dfrac{x}{21}=\dfrac{y}{14}=\dfrac{z}{10}\)\(\dfrac{3x}{63}=\dfrac{7y}{98}=\dfrac{5z}{50}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\dfrac{3x}{63}=\dfrac{7y}{98}=\dfrac{5z}{50}=\dfrac{3x-7y+5z}{63-98+50}=\dfrac{30}{15}=2\)

⇒x=42,y=28,z=20

Bình luận (0)
MH
15 tháng 9 2021 lúc 15:42

\(\dfrac{x}{3}=\dfrac{y}{2}\)\(\dfrac{x}{15}=\dfrac{y}{10}\)

\(\dfrac{x}{5}=\dfrac{z}{7}\text{⇒}\dfrac{x}{15}=\dfrac{z}{21}\)

\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{21}\)\(\dfrac{x}{15}=\dfrac{2y}{20}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{15}=\dfrac{2y}{20}=\dfrac{x+2y}{15+20}=\dfrac{-112}{35}=\dfrac{-16}{5}\)

⇒x=48,y=32,z=336/5

Bình luận (3)
AH
15 tháng 9 2021 lúc 16:03

Lời giải:

1. Áp dụng tính chất dãy tỉ số bằng nhau:

$\frac{x}{3}=\frac{y}{2}=\frac{2y}{4}=\frac{x+2y}{3+4}=\frac{-112}{7}=-16$

$\Rightarrow x=-16.3=-48; y=-16.2=-32$

Đoạn $\frac{x}{5}=\frac{x}{7}$ là sao em? Em xem lại đề.

2. 

$2x=3y\Rightarrow \frac{x}{3}=\frac{y}{2}\Rightarrow \frac{x}{21}=\frac{y}{14}(1)$

$5y=7z\Rightarrow \frac{y}{7}=\frac{z}{5}\Rightarrow \frac{y}{14}=\frac{z}{10}(2)$

Từ $(1);(2)\Rightarrow \frac{x}{21}=\frac{y}{14}=\frac{z}{10}$

Áp dụng tính chất dãy tỷ số bằng nhau:

$\frac{x}{21}=\frac{y}{14}=\frac{z}{10}$

$=\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{50}=\frac{3x-7y+5z}{63-98+50}=\frac{30}{15}=2$

$\Rightarrow x=2.21=42; y=2.14=28; z=2.10=20$

Bình luận (1)
VT
Xem chi tiết
MH
13 tháng 10 2021 lúc 20:44

\(\dfrac{x}{y}=\dfrac{-3}{4}\)

\(\dfrac{x}{-3}=\dfrac{y}{4}\) 

\(\dfrac{2x}{-6}=\dfrac{3y}{12}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\dfrac{2x}{-6}=\dfrac{3y}{12}=\dfrac{3y-2x}{12-\left(-6\right)}=\dfrac{36}{18}=2\)

\(\left\{{}\begin{matrix}x=2.-3=-6\\y=2.4=8\end{matrix}\right.\)

Bình luận (0)