a,b >0 cmr\(\frac{a}{\sqrt{b}}+\frac{b}{\sqrt{a}}>=\sqrt{a}+\sqrt{b}\)
Bài 1: CMR:
a, (4+\(\sqrt{3}\)). (4-\(\sqrt{3}\))=13
b, \(\sqrt{8+2\sqrt{7}}-\sqrt{8-2\sqrt{7}}=2\)
c, \(\frac{\sqrt{1}}{2+\sqrt{3}}+\frac{\sqrt{1}}{2-\sqrt{3}}=4\)
d, \(\frac{a\sqrt{b}+b\sqrt{a}}{\sqrt{ab}}:\frac{1}{\sqrt{a}-\sqrt{b}}=a-b\)(a>0, b>0, a≠b)
Bài 2: CMR:
a, \(\sqrt{a}+\frac{\sqrt{1}}{\sqrt{a}}\ge2\left(a>0\right)\)
b, a+b+\(\frac{1}{2}\ge\sqrt{a}+\sqrt{b}\left(a,b>0\right)\)
c, \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{1}{\sqrt{xyz}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{zx}}\left(x,y,z>0\right)\)
d, \(\frac{\sqrt{3}+2}{\sqrt{3}-2}-\frac{\sqrt{3}-2}{\sqrt{3}+2}=-8\sqrt{3}\)
e, \(\frac{a\sqrt{a}+b\sqrt{b}}{\sqrt{ab}}:\frac{1}{\sqrt{a}-\sqrt{b}}\)=a-b(a>0, b>0, a≠b)
Bài 3: Tìm Min hoặc Max(nếu có):
a, \(\sqrt{x^2+9}\)
b, \(\frac{2}{\sqrt{x^2+1}}\)
c, 1-\(\sqrt{5+2x-x^2}\)
2/
a/ \(\sqrt{a}+\frac{1}{\sqrt{a}}\ge2\sqrt{\sqrt{a}.\frac{1}{\sqrt{a}}}=2\), dấu "=" khi \(a=1\)
b/ \(a+b+\frac{1}{2}=a+\frac{1}{4}+b+\frac{1}{4}\ge2\sqrt{a.\frac{1}{4}}+2\sqrt{b.\frac{1}{4}}=\sqrt{a}+\sqrt{b}\)
Dấu "=" khi \(a=b=\frac{1}{4}\)
c/ Có lẽ bạn viết đề nhầm, nếu đề đúng thế này thì mình ko biết làm
Còn đề như vậy: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{xz}}\) thì làm như sau:
\(\frac{1}{x}+\frac{1}{y}\ge\frac{2}{\sqrt{xy}}\) ; \(\frac{1}{y}+\frac{1}{z}\ge\frac{2}{\sqrt{yz}}\); \(\frac{1}{x}+\frac{1}{z}\ge\frac{2}{\sqrt{yz}}\)
Cộng vế với vế ta được:
\(\frac{2}{x}+\frac{2}{y}+\frac{2}{z}\ge\frac{2}{\sqrt{xy}}+\frac{2}{\sqrt{yz}}+\frac{2}{\sqrt{xz}}\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{xz}}\)
Dấu "=" khi \(x=y=z\)
d/ \(\frac{\sqrt{3}+2}{\sqrt{3}-2}-\frac{\sqrt{3}-2}{\sqrt{3}+2}=\frac{\left(\sqrt{3}+2\right)\left(\sqrt{3}+2\right)}{\left(\sqrt{3}-2\right)\left(\sqrt{3}+2\right)}-\frac{\left(\sqrt{3}-2\right)\left(\sqrt{3}-2\right)}{\left(\sqrt{3}+2\right)\left(\sqrt{3}-2\right)}\)
\(=\frac{7+4\sqrt{3}}{3-4}-\frac{7-4\sqrt{3}}{3-4}=-7-4\sqrt{3}+7-4\sqrt{3}=-8\sqrt{3}\)
e/ \(\frac{a\sqrt{a}+b\sqrt{b}}{\sqrt{ab}}:\frac{1}{\sqrt{a}-\sqrt{b}}=\frac{\left(\sqrt{a}\right)^3+\left(\sqrt{b}\right)^3}{\sqrt{ab}}.\left(\sqrt{a}-\sqrt{b}\right)\)
\(=\frac{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{ab}}=\frac{\left(a-b\right)\left(a+b-\sqrt{ab}\right)}{\sqrt{ab}}\)
\(=\frac{a^2-b^2}{\sqrt{ab}}-\left(a-b\right)\) (bạn chép đề sai)
choa,b,c > 0. Cmr: \(\sqrt{\frac{2}{a}}+\sqrt{\frac{2}{b}}+\sqrt{\frac{2}{c}}\le\sqrt{\frac{a+b}{ab}}+\sqrt{\frac{b+c}{bc}}+\sqrt{\frac{c+a}{ca}}\)
Cho a > 0, b > 0. CMR: \(\frac{a}{\sqrt{b}}+\frac{b}{\sqrt{a}}\ge\sqrt{a}+\sqrt{b}\)
Áp dụng BĐT AM-GM ta có:
\(\frac{a}{\sqrt{b}}+\sqrt{b}\ge2.\sqrt{\frac{a}{\sqrt{b}}.\sqrt{b}}=2\sqrt{a}\)
Tương tự:\(\frac{b}{\sqrt{a}}+\sqrt{a}\ge2\sqrt{\frac{b}{\sqrt{a}}.\sqrt{a}}=2\sqrt{b}\)
Cộng theo vế BĐT ta được:\(\frac{a}{\sqrt{b}}+\sqrt{b}+\frac{b}{\sqrt{a}}+\sqrt{a}\ge2\left(\sqrt{a}+\sqrt{b}\right)\)
\(\Rightarrow\frac{a}{\sqrt{b}}+\frac{b}{\sqrt{a}}\ge\sqrt{a}+\sqrt{b}\)
Cho a,b,c>0 và abc=1
cmr: \(\frac{b+c}{\sqrt{a}}+\frac{a+c}{\sqrt{b}}+\frac{a+b}{\sqrt{c}}\ge\sqrt{a}+\sqrt{b}+\sqrt{c}+3
\)
bđt cần c/m tương đương với:
\(\left(\frac{b+c}{\sqrt{a}}+\sqrt{a}\right)+\left(\frac{a+c}{\sqrt{b}}+\sqrt{b}\right)+\left(\frac{a+b}{\sqrt{c}}+\sqrt{c}\right)\ge2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)+3\\ \ \)\(\left(a+b+c\right)\left(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\right)\ge2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)+3\)
Mặt khác:
\(a+b+c\ge\frac{\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2}{3}\)
\(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\ge\frac{9}{\sqrt{a}+\sqrt{b}+\sqrt{c}}\)
=> \(VT\ge3\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\)
Ta cần c/m:
\(3\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\ge2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)+3\)
<=> \(\sqrt{a}+\sqrt{b}+\sqrt{c}\ge3\sqrt[3]{\sqrt{abc}}=3\)(BĐt Cô-si)
xong rồi bạn nhé
Cho a,b,c>0
CMR:
\(\sqrt{\frac{2}{a}}+\sqrt{\frac{2}{b}}+\sqrt{\frac{2}{c}}\le\sqrt{\frac{a+b}{ab}}+\sqrt{\frac{b+c}{bc}}\sqrt{\frac{c+a}{ca}}\)
các bạn giúp mình nha càng nhanh càng tốt
Cho a, b, c > 0 thỏa mãn a + b = 2c. CMR \(\frac{1}{\sqrt{a}+\sqrt{c}}+\frac{1}{\sqrt{b}+\sqrt{c}}=\frac{2}{\sqrt{a}+\sqrt{b}}\)
Qui đồng chứng minh tương đương là ra
\(a+b=2c\Rightarrow\left\{{}\begin{matrix}c=\frac{a+b}{2}\\a-c=c-b\end{matrix}\right.\)
\(\frac{1}{\sqrt{a}+\sqrt{c}}+\frac{1}{\sqrt{b}+\sqrt{c}}=\frac{\sqrt{a}-\sqrt{c}}{a-c}+\frac{\sqrt{b}-\sqrt{c}}{b-c}=\frac{\sqrt{a}-\sqrt{c}}{a-c}-\frac{\sqrt{b}-\sqrt{c}}{a-c}\)
\(=\frac{\sqrt{a}-\sqrt{b}}{a-c}=\frac{\sqrt{a}-\sqrt{b}}{a-\frac{a+b}{2}}=\frac{2\left(\sqrt{a}-\sqrt{b}\right)}{a-b}=\frac{2}{\sqrt{a}+\sqrt{b}}\)
Cách khác.
Đặt \(x=\frac{1}{\sqrt{a}+\sqrt{c}};y=\frac{1}{\sqrt{b}+\sqrt{c}};z=\frac{1}{\sqrt{a}+\sqrt{b}}\)(*)
Cần chứng minh \(x+y=2z\)
(*)\(\Leftrightarrow\frac{1}{x}=\sqrt{a}+\sqrt{c};\frac{1}{y}=\sqrt{b}+\sqrt{c};\frac{1}{z}=\sqrt{a}+\sqrt{b}\)
Cộng vế :
\(2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
\(\Leftrightarrow2\cdot\left(\frac{1}{x}+\sqrt{a}\right)=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
\(\Leftrightarrow a=\frac{1}{4}\cdot\left(\frac{1}{y}+\frac{1}{z}-\frac{1}{x}\right)^2\)
Tương tự :
\(b=\frac{1}{4}\cdot\left(\frac{1}{x}-\frac{1}{y}+\frac{1}{z}\right)^2\)
\(c=\frac{1}{4}\cdot\left(\frac{1}{x}+\frac{1}{y}-\frac{1}{z}\right)^2\)
Theo giả thiết : \(a+b=2c\)
\(\Leftrightarrow\frac{1}{2}\cdot\left(\frac{1}{x}-\frac{1}{y}+\frac{1}{z}\right)^2=\frac{1}{4}\cdot\left[\left(\frac{1}{y}+\frac{1}{z}-\frac{1}{x}\right)^2+\left(\frac{1}{x}+\frac{1}{y}-\frac{1}{z}\right)^2\right]\)
\(\Leftrightarrow\frac{4}{xy}-\frac{2}{yz}-\frac{2}{zx}=0\)
\(\Leftrightarrow\frac{2}{xy}=\frac{1}{yz}+\frac{1}{zx}\)
\(\Leftrightarrow\frac{2z}{xyz}=\frac{x+y}{xyz}\)
\(\Leftrightarrow2z=x+y\) ( đpcm )
Với \(a,b>0.CMR:\frac{a}{\sqrt{b}}-\sqrt{a}\ge\sqrt{b}-\frac{b}{\sqrt{a}}\)
Áp dụng Cauchy ta có :
\(\frac{a}{\sqrt{b}}+\sqrt{b}\ge2\sqrt{\frac{a}{\sqrt{b}}.\sqrt{b}}=2\sqrt{a}\)(1)
\(\frac{b}{\sqrt{a}}+\sqrt{a}\ge2\sqrt{\frac{b}{\sqrt{a}}.\sqrt{a}}=2\sqrt{b}\)(2)
Cộng vế của (1) và (2) ta được :
\(\frac{a}{\sqrt{b}}+\sqrt{b}+\frac{b}{\sqrt{a}}+\sqrt{a}\ge2\sqrt{a}+2\sqrt{b}\)
\(\Leftrightarrow\frac{a}{\sqrt{b}}+\frac{b}{\sqrt{a}}\ge\sqrt{a}+\sqrt{b}\)
\(\Rightarrow\frac{a}{\sqrt{b}}-\sqrt{a}\ge\sqrt{b}-\frac{b}{\sqrt{a}}\) (đpcm)
\(\sqrt{\frac{A+\sqrt{A^2-B}}{2}}+\sqrt{\frac{A-\sqrt{A^2-B}}{2}}=\sqrt{A+\sqrt{B}}\)
CMR: Cho A>0,B>0
Các bạn giúp mình nhé
Bạn xem lại đề bài nhé :)
Nhận xét : Với \(x\ge0\), ta có \(x=\sqrt{x^2}\)
Đặt \(x=\sqrt{A-\sqrt{B}}+\sqrt{A+\sqrt{B}}\), ta có \(x\ge0\), từ nhận xét suy ra \(x=\sqrt{x^2}\)
Ta có : \(x^2=2A+2\sqrt{A^2-B}=4\left(\frac{A+\sqrt{A^2-B}}{2}\right)\)
\(\Rightarrow x=2\sqrt{\frac{A+\sqrt{A^2-B}}{2}}\)(1). Tương tự, đặt \(y=\sqrt{A+\sqrt{B}}-\sqrt{A-\sqrt{B}}\).
Xét : \(A+\sqrt{B}-\left(A-\sqrt{B}\right)=2\sqrt{B}>0\Leftrightarrow A+\sqrt{B}>A-\sqrt{B}\)
\(\Leftrightarrow\sqrt{A+\sqrt{B}}>\sqrt{A-\sqrt{B}}\Rightarrow y>0\). Áp dụng nhận xét, ta cũng có \(y=\sqrt{y^2}\)
Ta có : \(y=\sqrt{A+\sqrt{B}}-\sqrt{A-\sqrt{B}}\Leftrightarrow y=2A-2\sqrt{A^2-B}=4\left(\frac{A-\sqrt{A^2-B}}{2}\right)\)
\(\Rightarrow y=2\sqrt{\frac{A-\sqrt{A^2-B}}{2}}\) (2)
Cộng (1) và (2) theo vế : \(x+y=2\left(\sqrt{\frac{A^2+\sqrt{B}}{2}}+\sqrt{\frac{A^2-\sqrt{B}}{2}}\right)\)
\(2\sqrt{A+\sqrt{B}}=2\left(\sqrt{\frac{A^2+\sqrt{B}}{2}}+\sqrt{\frac{A^2-\sqrt{B}}{2}}\right)\)
\(\Leftrightarrow\sqrt{A+\sqrt{B}}=\sqrt{\frac{A^2+\sqrt{B}}{2}}+\sqrt{\frac{A^2-\sqrt{B}}{2}}\)(đpcm)
Mình nghĩ bạn chép sai đề rồi, mình sửa lại nhé \(\sqrt{\frac{A+\sqrt{A^2-B}}{2}}+\sqrt{\frac{A-\sqrt{A^2-B}}{2}}=\sqrt{A+\sqrt{B}}\)
Bình phương vế trái ta có: \(\left(\sqrt{\frac{A+\sqrt{A^2-B}}{2}}+\sqrt{\frac{A-\sqrt{A^2-B}}{2}}\right)^2\)
\(=\frac{A+\sqrt{A^2-B}}{2}+\frac{A-\sqrt{A^2-B}}{2}+2\sqrt{\frac{\left(A+\sqrt{A^2-B}\right)\left(A-\sqrt{A^2-B}\right)}{4}}\)
\(=\frac{2A+\sqrt{A^2-B}-\sqrt{A^2-B}}{2}+2\sqrt{\frac{A^2-\left(A^2-B\right)}{4}}\)
\(=A+2\sqrt{\frac{B}{4}}=A+\sqrt{4.\frac{B}{4}}=A+\sqrt{B}.\)
Do \(A>0,B>0\)nên ta suy ra \(\sqrt{\frac{A+\sqrt{A^2-B}}{2}}+\sqrt{\frac{A-\sqrt{A^2-B}}{2}}=\sqrt{A+\sqrt{B}}\)(đpcm).
Cho \(A>0,B>0\)CMR: \(\sqrt{\frac{A+\sqrt{A^2-B}}{2}}+\sqrt{\frac{A-\sqrt{A^2-B}}{2}}=\sqrt{A+\sqrt{B}}\)