Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
LH
Xem chi tiết
NT
20 tháng 3 2021 lúc 13:39

a) Ta có: \(\Delta=\left(-1\right)^2-4\cdot1\cdot\left(-2m-10\right)\)

\(=1+4\left(2m+10\right)\)

\(=8m+41\)

Để phương trình (1) có nghiệm thì \(8m+41\ge0\)

hay \(m\ge-\dfrac{41}{8}\)

Bình luận (0)
H24
Xem chi tiết
WF
Xem chi tiết
WF
Xem chi tiết
IY
6 tháng 3 2018 lúc 17:11

a) TA CÓ: GÓC A LÀ GÓC ĐỐI DIỆN VỚI CẠNH BC

GÓC A1 LÀ GÓC ĐỐI DIỆN VỚI CẠNH B1C1

MÀ BC> B1C1 (GT); AB=A1B1 (GT); AC=A1C1(GT)

=> GÓC A > GÓC A1 ( ĐỊNH LÍ)

B) TA CÓ : BC LÀ CẠNH ĐỐI DIỆN VỚI GÓC A

B1C1 LÀ CẠNH ĐỐI DIỆN VỚI GÓC A1

MÀ GÓC A> A1 ( GT); AB=A1B1 (GT); AC =A1C1 ( GT)

=> BC> B1C1 ( ĐỊNH LÍ)

CHÚC BN HỌC TỐT!!!!!!!!

Bình luận (0)
NT
Xem chi tiết
H24
Xem chi tiết
NT
Xem chi tiết
NV
Xem chi tiết
DL
Xem chi tiết
NT
8 tháng 4 2023 lúc 9:02

1: \(O_2D=O_2A+CD=\dfrac{AC}{2}+\dfrac{BC}{2}=\dfrac{AB}{2}=R_1\)

góc O2MD=góc O2MC+góc CMD

=1/2*sđ cung CM+góc MCA

=90 độ

=>DM là tiếp tuyến của (O2)

PD^2=BD*DA=DC*BA=DM^2=O2D-R2^2

=>PD^2=R1^2-R2^2

2: Xet ΔD1BD vuông tại D1 và ΔD4BD vuông tại D4 có

BD chung

góc D1BD=góc D4BD

=>ΔD1BD=ΔD4BD

=>D1=D4

CM tương tự, ta được: DD2=DD3, BP=BQ, PA=PB

=>D1D+D2D+D3D+D4D<=1/2(BP+PA+AQ+QB)

=>2*(D1D+D2D)<=PA+PB

PB^2=BD^2+DP^2>=2*DB*DP

=>\(PB>=\dfrac{2\cdot DB\cdot DP}{PB}=2\cdot D_1D\)

Chứng minh tương tự,ta được: \(AP>=\dfrac{2\cdot DA\cdot DP}{PA}=2\cdot D_2D\)

=>ĐPCM

Bình luận (0)
NV
Xem chi tiết
NL
26 tháng 3 2022 lúc 21:37

a.

Phương trình có 2 nghiệm dương pb khi:

\(\left\{{}\begin{matrix}m+2\ne0\\\Delta'=\left(m+1\right)^2-\left(m+2\right)\left(m-4\right)>0\\x_1+x_2=\dfrac{2\left(m+1\right)}{m+2}>0\\x_1x_2=\dfrac{m-4}{m+2}>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne-2\\4m+9>0\\\dfrac{m+1}{m+2}>0\\\dfrac{m-4}{m+2}>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m\ne-2\\m>-\dfrac{9}{4}\\\left[{}\begin{matrix}m>-1\\m< -2\end{matrix}\right.\\\left[{}\begin{matrix}m>4\\m< -2\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}m>4\\-\dfrac{9}{4}< m< -2\end{matrix}\right.\)

Bình luận (0)
NL
26 tháng 3 2022 lúc 21:39

b.

Pt có 2 nghiệm khi: \(\left\{{}\begin{matrix}m\ne-2\\\Delta'=4m+9\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m\ne-2\\m\ge-\dfrac{9}{4}\end{matrix}\right.\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2\left(m+1\right)}{m+2}\\x_1x_2=\dfrac{m-4}{m+2}\end{matrix}\right.\)

\(3\left(x_1+x_2\right)=5x_1x_2\)

\(\Leftrightarrow\dfrac{6\left(m+1\right)}{m+2}=\dfrac{5\left(m-4\right)}{m+2}\)

\(\Rightarrow6\left(m+1\right)=5\left(m-4\right)\)

\(\Leftrightarrow m=-26< -\dfrac{9}{4}\left(loại\right)\)

Vậy ko tồn tại m thỏa mãn yêu cầu 

Bình luận (0)