Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
1.Cho \(\frac{a_1}{2a_2}=\frac{2a_2}{3a_3}=.......=\frac{2015a_{2015}}{2016a_{2016}}=\frac{2016a_{2016}}{a_1}\) và \(a_1+a_2+a_3+...+a_{2016}\ne0\)
CMR \(a_1=a_2=a_3...=a_{2016}\)
2.Cho\(\frac{a}{2014}=\frac{a}{2015}=\frac{a}{2016}\) CMR:\(4\left(a-b\right)\left(b-c\right)=\left(c-a\right)^2\)
3.Tìm x,y,z biết \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\) và \(x^2-\left(x-y\right)=0\)
4.Cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\) CMR \(\left(\frac{a+b}{c+d}\right)^3=\frac{a^3+b^3}{c^3+d^3}\)
Giúp mình với ạ!Mai phải nộp rồi☹
Bài 1: Cho \(\frac{x+y-3}{z}=\frac{x+z+2}{y}=\frac{y+z+1}{x}=\frac{1}{x+y+z}\). Tìm x;y;z.
Bài 2: Cho \(\frac{1+2y}{18}=\frac{1+4y}{24}=\frac{1+6y}{6x}\). Tìm x.
Bài 3: Cho \(\frac{a+b}{b+c}=\frac{c+d}{d+a}\). Chứng minh rằng \(\left[{}\begin{matrix}a=c\\a+b+c+d=0\end{matrix}\right.\).
Bài 4: Tìm \(a_1;a_2;a_3;...;a_{100}\)biết:
\(\frac{a_1-1}{100}=\frac{a_2-2}{99}=\frac{a_3-3}{98}=...=\frac{a_{100}-100}{1}\)và \(a_1+a_2+a_3+...+a_{100}=10100\).
Bài 5: Tìm x biết:
a) \(\left[\frac{3x+1}{5}\right]=1\)
b) \(\left[\frac{7x-5}{3}\right]=-2\)
Bài 6: Tìm \(\left[x\right]\) biết:
a) \(3< x< \frac{17}{5}\)
b) \(\frac{-9}{2}< x< -4\)
c) \(\frac{-11}{3}< x< \frac{10}{-3}\)
Cho: \(a_1;a_2;a_3;a_4\ne0\) thỏa mãn \(\left\{{}\begin{matrix}\left(a_2\right)^2=a_1\cdot a_3\\\left(a_3\right)^2=a_2\cdot a_4\end{matrix}\right.\)
CMR: \(\frac{a_1}{a_4}=\frac{\left(a_1\right)^3+\left(a_2\right)^3+\left(a_3\right)^3}{\left(a_2\right)^3+\left(a_3\right)^3+\left(a_4\right)^3}\)
Cho các số a1 ; a2 ; .... ; a2012 và a1 + a2 + ... + a2012 \(\ne\)0 . Tính M = \(\frac{a_1^{2012}+a^{2012}_2+....+a^{2012}_{2012}}{\left(a_1+a_2+...+a_{2012}\right)^{2012}}\)
tính giá trị biểu thức
A=\(\frac{\left[1+2+3+......+100\right].\left[\frac{1}{2}-\frac{1}{3}-\frac{1}{4}-\frac{1}{5}\right].\left[2,4.42-21.4,8\right]}{1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{100}}\)
\(A=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)....................\left(\frac{1}{100^2}-1\right)\)
So sánh A với \(\frac{-1}{2}\)
tính
a)\(\left(1-\frac{1}{1+2}\right).\left(1-\frac{1}{1+2+3}\right).\left(1-\frac{1}{1+2+3+4}\right).....\left(1-\frac{1}{1+2+3+...+20}\right)\)
b)\(\frac{\left(1+2+3+...+100\right).\left(12.3,4-6,86\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}}\)
c)(18.123+9.436.2+3.5310.6):1+4+7+...+100-410)
giúp mk vs mai mk kiểm tra rồi . ai đúng mk tick nha
cho biểu thức: \(A=\left(\frac{-1}{3}\right)+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{100}}\)
tính \(B=4\left|A\right|+\frac{1}{3^{100}}\)
a,cho A=\(\frac{1}{7^2}-\frac{1}{7^4}+\frac{1}{7^6}-\frac{1}{7^8}+...+\) \(\frac{1}{7^{98}}-\frac{1}{7^{100}}\) .CMR:A<\(\frac{1}{50}\)
b,Giả sử có 2015 số nguyên dương \(a_1,a_2,a_3,...,a_{2015}\) thỏa mãn :\(\frac{1}{a_1}+\frac{1}{a_2}+\frac{1}{a_3}+\frac{1}{a_4}+...+\) \(\frac{1}{a_{2015}}=1008\) .CMR:có ít nhất 2 trong 2015 số nguyên dương đã cho = nhau