Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
ND
Xem chi tiết
NT
25 tháng 2 2022 lúc 21:28

1: \(\Leftrightarrow\left(x-4\right)^2+14=-9\left(x-4\right)\)

\(\Leftrightarrow x^2-8x+16+14+9x-36=0\)

\(\Leftrightarrow x^2+x-6=0\)

=>(x+3)(x-2)=0

=>x=-3(nhận) hoặc x=2(nhận)

2: \(\Leftrightarrow\left(8x+1\right)\left(2x-1\right)-2x\left(2x+1\right)-12x^2+9=0\)

\(\Leftrightarrow16x^2-8x+2x-1-4x^2-2x-12x^2+9=0\)

=>-8x+8=0

hay x=1(nhận)

c: \(\dfrac{1}{2\left(x-3\right)}-\dfrac{3x-5}{\left(x-3\right)\left(x-1\right)}=\dfrac{1}{2}\)

\(\Leftrightarrow x-1-2\left(3x-5\right)=\left(x-3\right)\left(x-1\right)\)

\(\Leftrightarrow x^2-4x+3=x-1-6x+10=-5x+9\)

\(\Leftrightarrow x^2+x-6=0\)

=>(x+3)(x-2)=0

=>x=-3(nhận) hoặc x=2(nhận)

Bình luận (0)
NH
Xem chi tiết
NC
12 tháng 1 2021 lúc 20:41

a, \(\dfrac{\left(2x-5\right)\left(x+2\right)}{4x-3}< 0\)

⇔ \(\left[{}\begin{matrix}\left\{{}\begin{matrix}\left(2x-5\right)\left(x+2\right)< 0\\4x-3>0\end{matrix}\right.\\\left\{{}\begin{matrix}\left(2x-5\right)\left(x+2\right)>0\\4x-3< 0\end{matrix}\right.\end{matrix}\right.\)

⇔ \(\left[{}\begin{matrix}\left\{{}\begin{matrix}-2< x< \dfrac{5}{2}\\x>\dfrac{3}{4}\end{matrix}\right.\\\left\{{}\begin{matrix}\left[{}\begin{matrix}x< -2\\x>\dfrac{5}{2}\end{matrix}\right.\\x< \dfrac{3}{4}\end{matrix}\right.\end{matrix}\right.\)

⇔ \(\left[{}\begin{matrix}\dfrac{3}{4}< x< \dfrac{5}{2}\\x< -2\end{matrix}\right.\)

Vậy tập nghiệm của bất phương trình là

S = \(\left(\dfrac{3}{4};\dfrac{5}{2}\right)\cup\left(-\infty;-2\right)\)

b, Pt

⇔ \(\left\{{}\begin{matrix}x^2-5x+6=x^2+6x+5\\x\in R\backslash\left\{-1;2\right\}\end{matrix}\right.\)

⇔ x = \(\dfrac{1}{11}\)

Vậy S = \(\left\{\dfrac{1}{11}\right\}\)

Bình luận (0)
LG
Xem chi tiết
NT
24 tháng 2 2021 lúc 13:19

a) Ta có: \(2\left(3x+1\right)-4\left(5-2x\right)>2\left(4x-3\right)-6\)

\(\Leftrightarrow6x+2-20+8x>8x-6-6\)

\(\Leftrightarrow14x-18-8x+12>0\)

\(\Leftrightarrow6x-6>0\)

\(\Leftrightarrow6x>6\)

hay x>1

Vậy: S={x|x>1}

b) Ta có: \(9x^2-3\left(10x-1\right)< \left(3x-5\right)^2-21\)

\(\Leftrightarrow9x^2-30x+3< 9x^2-30x+25-21\)

\(\Leftrightarrow9x^2-30x+3-9x^2+30x-4< 0\)

\(\Leftrightarrow-1< 0\)(luôn đúng)

Vậy: S={x|\(x\in R\)}

Bình luận (0)
TV
Xem chi tiết
TN
Xem chi tiết
QL
Xem chi tiết
HM
30 tháng 9 2023 lúc 23:43

a)      \(2{x^2} - 3x + 1 > 0\)

Tam thức \(f\left( x \right) = 2{x^2} - 3x + 1\) có \(a + b + c = 2 - 3 + 1 = 0\) nên hai nghiệm phân biệt \({x_1} = 1\) và \({x_2} = \frac{1}{2}.\)

Mặt khác \(a = 2 > 0,\) do đó ta có bảng xét dấu sau:

Tập nghiệm của bất phương trình là: \(S= \left( { - \infty ;\frac{1}{2}} \right) \cup \left( {1; + \infty } \right).\)

b)     \({x^2} + 5x + 4 < 0\)

Tam thức \(f\left( x \right) = {x^2} + 5x + 4\) có \(a - b + c = 1 - 5 + 4 = 0\) nên phương trình có hai nghiệm phân biệt \(x =  - 1\) và \(x =  - 4.\)

Mặt khác \(a = 1 > 0,\) do đó ta có bảng xét dấu sau:

Tập nghiệm của bất phương trình là: \(S = \left( { - 4; - 1} \right).\)

c)      \( - 3{x^2} + 12x - 12 \ge 0\)

Tam thức \(f\left( x \right) =  - 3{x^2} + 12x - 12 =  - 3\left( {{x^2} - 4x + 4} \right) =  - 3{\left( {x - 2} \right)^2} \le 0\)

Do đó 

\( - 3{x^2} + 12x - 12 \ge 0 \Leftrightarrow  - 3{x^2} + 12x - 12 = 0 \Leftrightarrow  - 3{\left( {x - 2} \right)^2} = 0 \Leftrightarrow x = 2.\)

Tập nghiệm của bất phương trình là: \(S = \left( { 2} \right).\)

d)     \(2{x^2} + 2x + 1 < 0.\)

Tam thức \(f\left( x \right) = 2{x^2} + 2x + 1\) có \(\Delta  =  - 1 < 0,\) hệ số \(a = 2 > 0\) nên \(f\left( x \right)\) luôn dướng với mọi \(x,\) tức là \(2{x^2} + 2x + 1 > 0\) với mọi \(x \in \mathbb{R}.\)

\( \Rightarrow \) bất phương trình vô nghiệm

Bình luận (0)
H24
Xem chi tiết
NT
8 tháng 4 2023 lúc 0:26

a: =>\(\dfrac{2x-4}{2014}+\dfrac{2x-2}{2016}< \dfrac{2x-1}{2017}+\dfrac{2x-3}{2015}\)

=>\(\dfrac{2x-2018}{2014}+\dfrac{2x-2018}{2016}< \dfrac{2x-2018}{2017}+\dfrac{2x-2018}{2015}\)

=>2x-2018<0

=>x<2019

b: \(\Leftrightarrow\left(\dfrac{3-x}{100}+\dfrac{4-x}{101}\right)>\dfrac{5-x}{102}+\dfrac{6-x}{103}\)

=>\(\dfrac{x-3}{100}+\dfrac{x-4}{101}-\dfrac{x-5}{102}-\dfrac{x-6}{103}< 0\)

=>\(x+97< 0\)

=>x<-97

Bình luận (0)
H24
Xem chi tiết
HM
22 tháng 9 2023 lúc 19:17

a) \({\log _{\frac{1}{7}}}\left( {x + 1} \right) > {\log _7}\left( {2 - x} \right)\)               (ĐK: \(x + 1 > 0;2 - x > 0 \Leftrightarrow  - 1 < x < 2\))

\(\begin{array}{l} \Leftrightarrow {\log _{{7^{ - 1}}}}\left( {x + 1} \right) > {\log _7}\left( {2 - x} \right)\\ \Leftrightarrow  - {\log _7}\left( {x + 1} \right) > {\log _7}\left( {2 - x} \right)\\ \Leftrightarrow {\log _7}{\left( {x + 1} \right)^{ - 1}} > {\log _7}\left( {2 - x} \right)\\ \Leftrightarrow {\left( {x + 1} \right)^{ - 1}} > 2 - x\\ \Leftrightarrow \frac{1}{{x + 1}} - 2 + x > 0\\ \Leftrightarrow \frac{{1 + \left( {x - 2} \right)\left( {x + 1} \right)}}{{x + 1}} > 0\\ \Leftrightarrow \frac{{1 + {x^2} - x - 2}}{{x + 1}} > 0 \Leftrightarrow \frac{{{x^2} - x - 1}}{{x + 1}} > 0\end{array}\)

Mà – 1 < x < 2 nên x + 1 > 0

\( \Leftrightarrow {x^2} - x - 1 > 0 \Leftrightarrow \left[ \begin{array}{l}x < \frac{{1 - \sqrt 5 }}{2}\\x > \frac{{1 + \sqrt 5 }}{2}\end{array} \right.\)

KHĐK ta có \(\left[ \begin{array}{l} - 1 < x < \frac{{1 - \sqrt 5 }}{2}\\\frac{{1 + \sqrt 5 }}{2} < x < 2\end{array} \right.\)

b) \(2\log \left( {2x + 1} \right) > 3\)              (ĐK: \(2x + 1 > 0 \Leftrightarrow x > \frac{{ - 1}}{2}\))

\(\begin{array}{l} \Leftrightarrow \log \left( {2x + 1} \right) > \frac{3}{2}\\ \Leftrightarrow 2x + 1 > {10^{\frac{3}{2}}} = 10\sqrt {10} \\ \Leftrightarrow x > \frac{{10\sqrt {10}  - 1}}{2}\end{array}\)

KHĐK ta có \(x > \frac{{10\sqrt {10}  - 1}}{2}\)

Bình luận (0)
TL
Xem chi tiết
NT
19 tháng 2 2022 lúc 8:23

a: \(\Leftrightarrow2x^2+6x-x^2-2x+x+2-x^2-6=0\)

=>5x-4=0

hay x=4/5

b: \(\Leftrightarrow\left(x-5\right)\left(x+x+3\right)=0\)

=>(x-5)(2x+3)=0

=>x=5 hoặc x=-3/2

Bình luận (0)
MH
19 tháng 2 2022 lúc 8:26

a) \(2x\left(x+3\right)-\left(x-1\right)\left(x+2\right)=x^2+6\)

\(2x^2+6x-\left(x^2+2x-x-2\right)=x^2+6\)

\(x^2+5x+2=x^2+6\)

\(x^2+5x+2-x^2-6=0\)

\(5x-4=0\)

\(x=\dfrac{4}{5}\)

b) \(x\left(x-5\right)+\left(x-5\right)\left(x+3\right)=0\)

\(\left(x-5\right)\left(x+x+3\right)=0\)

\(\left(x-5\right)\left(2x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-\dfrac{3}{2}\end{matrix}\right.\)

Bình luận (0)
NT
Xem chi tiết
TN
11 tháng 6 2021 lúc 21:20

undefined

b. `|x + 1| + |2x - 3| = |3x - 2|`

Ta có: \(\left|x+1\right|+\left|2x-3\right|\ge\left|x+1+2x-3\right|=\left|3x-2\right|\)

\(\Leftrightarrow\left|3x-2\right|=\left|3x-2\right|\) (luôn đúng với mọi x)

Vậy phương trình có vô số nghiệm.

undefinedundefined

Bình luận (0)