Giải phương trình :
a) \(x^4-24x+32=0\)
b) \(x^4-8x\sqrt{2}+12=0\)
Giải phương trình :
a) \(x^4-24x+32=0\)
b) \(x^4-8x\sqrt{2}+12=0\)
a) \(x^4-24x+32=0\)
\(\Leftrightarrow x^4-2x^3+2x^3-4x^2+4x^2-8x-16x+32=0\)
\(\Leftrightarrow x^3\left(x-2\right)+2x^2\left(x-2\right)+4x\left(x-2\right)-16\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^3+2x^2+4x-16\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x^3+2x^2+4x-16=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x\approx1,62\end{matrix}\right.\)
b) \(x^4-8x\sqrt{2}+12=0\)
\(\Leftrightarrow x^4-\sqrt{2}x^3+\sqrt{2}x^3-2x^2+2x^2-2\sqrt{2}x-6\sqrt{2}x+12=0\)
\(\Leftrightarrow x^3\left(x-\sqrt{2}\right)+\sqrt{2}x^2\left(x-\sqrt{2}\right)+2x\left(x-\sqrt{2}\right)-6\sqrt{2}\left(x-\sqrt{2}\right)=0\)
\(\Leftrightarrow\left(x-\sqrt{2}\right)\left(x^3+\sqrt{2}x^2+2x-6\sqrt{2}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{2}\\x\approx1,4142135...\end{matrix}\right.\)
giải phương trình sau:
a) \(4x^2+\left(8x-4\right).\sqrt{x}-1=3x+2\sqrt{2x^2+5x-3}\)
b) \(8x^3-36x^2+\left(1-3x\right)\sqrt{3x-2}-3\sqrt{3x-2}+63x-32=0\)
c) \(2\sqrt[3]{3x-2}-3\sqrt{6-5x}+16=0\)
d) \(\sqrt[3]{x+6}-2\sqrt{x-1}=4-x^2\)
Giải các phương trình sau:
1) x4-8x3+11x2+8x-12=0
2) 4x3+x2+x-3=0
3)x5-5x4-2x3+17x2-13x+2=0
4) x4= 24x2-32
1) \(x^4-8x^3+11x^2+8x-12=0\)
\(\Leftrightarrow x^4-x^3-7x^3+7x^2+4x^2-4x+12x-12=0\)
\(\Leftrightarrow x^3\left(x-1\right)-7x^2\left(x-1\right)+4x\left(x-1\right)+12\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3-7x^2+4x+12\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3+x^2-8x^2-8x+12x+12\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left[x^2\left(x+1\right)-8x\left(x+1\right)+12\left(x+1\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x^2-8x+12\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x^2-2x-6x+12\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left[x\left(x-2\right)-6\left(x-2\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+1=0\\x-2=0\\x-6=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\\x=2\\x=6\end{matrix}\right.\)
Vậy ...
2) \(4x^3+x^2+x-3=0\)
\(\Leftrightarrow4x^3-3x^2+4x^2-3x+4x-3=0\)
\(\Leftrightarrow x^2\left(4x-3\right)+x\left(4x-3\right)+\left(4x-3\right)=0\)
\(\Leftrightarrow\left(4x-3\right)\left(x^2+x+1\right)=0\)
\(\Leftrightarrow4x-3=0\left(\text{vì }x^2+x+1=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\right)\)
\(\Leftrightarrow4x=3\Leftrightarrow x=\dfrac{3}{4}\)
Vậy ...
Giải phương trình :\(x^2+8x+16-2\left(x+1\right).\sqrt{2x+5}-2\sqrt{3x^2+24x+21}=0\)
\(\left(\sqrt{2x+5}-\left(x+1\right)\right)^2+\left(\sqrt{3\left(x+1\right)}-\sqrt{x+7}\right)^2=0.\\
\)
Đến đây chắc biết phải làm gì =))
giải phương trình
a)\(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}+2=0\)
b) \(\dfrac{1}{3}\sqrt{2x}-\sqrt{8x}+\sqrt{18x}-10=2\)
\(a,ĐK:x\ge1\\ PT\Leftrightarrow\sqrt{x-1}+2\sqrt{x-1}-5\sqrt{x-1}=-2\\ \Leftrightarrow-2\sqrt{x-1}=-2\Leftrightarrow\sqrt{x-1}=1\\ \Leftrightarrow x-1=1\Leftrightarrow x=2\left(tm\right)\\ b,ĐK:x\ge0\\ PT\Leftrightarrow\dfrac{1}{3}\sqrt{2x}-2\sqrt{2x}+3\sqrt{2x}=12\\ \Leftrightarrow\dfrac{4}{3}\sqrt{2x}=12\Leftrightarrow\sqrt{2x}=9\\ \Leftrightarrow2x=81\Leftrightarrow x=\dfrac{81}{2}\left(tm\right)\)
1/ Chứng minh phương trình vô nghiệm:
a) \(-16x^2-8x+4=0\)
b) \(-x^2+4x-4=0\)
2/ Giải phương trình sau:
\(\left(x^2-2x-4\right)\left(2x^2-8x-1\right)=0\)
Bài 1:
b: \(\Leftrightarrow x-2=0\)
hay x=2
Giải các phương trình sau :
a, \(x^4=24x+32\)
b, \(x^3=-3x^2+3x-1\)
c, \(x^4-x^2+2x-1=0\)
b)
<=>x^3+3x^2-3x+1=0
<=> (x-1)^3=0
<=> x=1.
c)<=>x^4=x^2-2x+1
<=>x^4=(x-1)^2
<=>(x^2-x+1)(x^2+x-1)=0
Do x^2-x+1>0
=> x^2+x-1=0
<=> x=(-1+căn 5)/2; (-1-căn 5)/2
giải phương trình: \(\sqrt{2x+7}\) + \(\sqrt[3]{x+4}\) + x² + 8x+ 13=0
Lời giải:
ĐKXĐ: $x\geq -3,5$
PT \(\Leftrightarrow (\sqrt{2x+7}-1)+(\sqrt[3]{x+4}-1)+(x^2+8x+15)=0\)
\(\Leftrightarrow \frac{2(x+3)}{\sqrt{2x+7}+1}+\frac{x+3}{\sqrt[3]{(x+4)^2}+\sqrt[3]{x+4}+1}+(x+3)(x+5)=0\)
\(\Leftrightarrow (x+3)\left[\frac{2}{\sqrt{2x+7}+1}+\frac{1}{\sqrt[3]{(x+4)^2}+\sqrt[3]{x+4}+1}+(x+5)\right]=0\)
Với $x\geq -3,5$ dễ thấy biểu thức trong ngoặc vuông $>0$
Do đó: $x+3=0$
$\Leftrightarrow x=-3$ (thỏa mãn)
Giải bất phương trình sau : a/ 2x ^ 2 + 6x - 8 < 0 x ^ 2 + 5x + 4 >=\ 2) Giải phương trình sau : a/ sqrt(2x ^ 2 - 4x - 2) = sqrt(x ^ 2 - x - 2) c/ sqrt(2x ^ 2 - 4x + 2) = sqrt(x ^ 2 - x - 3) b/ x ^ 2 + 5x + 4 < 0 d/ 2x ^ 2 + 6x - 8 > 0 b/ sqrt(- x ^ 2 - 5x + 2) = sqrt(x ^ 2 - 2x - 3) d/ sqrt(- x ^ 2 + 6x - 4) = sqrt(x ^ 2 - 2x - 7)
2:
a: =>2x^2-4x-2=x^2-x-2
=>x^2-3x=0
=>x=0(loại) hoặc x=3
b: =>(x+1)(x+4)<0
=>-4<x<-1
d: =>x^2-2x-7=-x^2+6x-4
=>2x^2-8x-3=0
=>\(x=\dfrac{4\pm\sqrt{22}}{2}\)