Những câu hỏi liên quan
VT
Xem chi tiết
HG
19 tháng 10 2016 lúc 14:01

a, \(A=1+2+2^2+2^3+...+2^{100}\)

=> \(2A=2+2^2+2^3+2^4+...+2^{101}\)

=> \(A=2A-A=2^{101}-1\)

=> \(A+1=2^{101}\)

b, \(B=3+3^2+3^3+...+3^{2005}\)

\(3A=3^2+3^3+3^4+....+3^{2006}\)

=> \(2A=3A-A=3^{2006}-3\)

=> \(2A+3=3^{2006}\)là lũy thừa của 3

=> Đpcm

Bình luận (0)
IW
19 tháng 10 2016 lúc 14:10

a) Ta có: \(A=1+2+2^2+2^3+.....+2^{100}\)

\(\Rightarrow2A=2+2^2+2^3+........+2^{101}\)

Lấy 2A-A ta có: 

\(2A-A=\left(2+2^2+2^3+2^4+.....+2^{101}\right)\)\(-\left(1+2+2^2+2^3+.......+2^{100}\right)\)

\(\Rightarrow A=2^{101}-1\)

\(\Rightarrow A+1=2^{101}-1+1\)

\(\Rightarrow A+1=2^{101}\)

b) Ta có: \(B=3+3^2+3^3+.....+3^{2005}\)

\(\Rightarrow3B=3^2+3^3+3^4+.....+3^{2006}\)

\(\Rightarrow3B-B=\left(3^2+3^3+3^4+....+3^{2006}\right)\)\(-\left(3+3^2+3^3+......+3^{2005}\right)\)

\(\Rightarrow2B=3^{2006}-3\)

\(\Rightarrow2B+3=3^{2006}-3+3\)

\(\Rightarrow2B+3=3^{2006}\)

Vậy 2B+3 là lũy thừa của 3         ĐPCM

Bình luận (0)
TT
17 tháng 9 2021 lúc 18:17

9+8^2+8^3+...8^50

Bình luận (0)
 Khách vãng lai đã xóa
TV
Xem chi tiết
H24
Xem chi tiết
NT
19 tháng 6 2016 lúc 14:13

A=3+32+34+......+399+3100

=>3A= 32+34+......+399+3100+3101

-A=3+32+34+......+399+3100

=>2A=3101-3

=>2A+3=3101

=>2A+3 là 1 lũy thừa của 3.(đpcm)

Bình luận (0)
SG
19 tháng 6 2016 lúc 14:15

A = 3 + 32 + 33 + ... + 399 + 3100

3A = 32 + 33 + 34 + ... + 3100 + 3101

3A - A = (32 + 33 + 34 + ... + 3100 + 3101) - (3 + 32 + 33 + ... + 399 + 3100)

2A = 3101 - 3

=> 2A + 3 = 3101

=> đpcm

Bình luận (0)
GP
Xem chi tiết
NT
15 tháng 10 2023 lúc 19:01

a: \(A=4+2^2+2^3+...+2^{20}\)

=>\(2A=8+2^3+2^4+...+2^{21}\)

=>\(2A-A=2^{21}+2^{20}+...+2^4+2^3+8-2^{20}-2^{19}-...-2^3-2^2-4\)

\(=2^{21}+8-2^2-4=2^{21}\)

=>\(A=2^{21}\) là lũy thừa của 2

b:

\(B=3+3^2+3^3+...+3^{100}\)

=>\(3B=3^2+3^3+...+3^{101}\)

=>\(2B=3^{101}-3\)

=>\(2B+3=3^{101}\) là lũy thừa của 3

Bình luận (1)
TU
Xem chi tiết
H9
1 tháng 9 2023 lúc 9:17

a) \(A=1+2+2^2+...+2^{80}\)

\(2A=2+2^2+2^3+...+2^{81}\)

\(2A-A=2+2^2+2^3+...+2^{81}-1-2-2^2-...-2^{80}\)

\(A=2^{81}-1\)

Nên A + 1 là:

\(A+1=2^{81}-1+1=2^{81}\)

b) \(B=1+3+3^2+...+3^{99}\)

\(3B=3+3^2+3^3+...+3^{100}\)

\(3B-B=3+3^2+3^3+...+3^{100}-1-3-3^2-...-3^{99}\)

\(2B=3^{100}-1\)

Nên 2B + 1 là:

\(2B+1=3^{100}-1+1=3^{100}\)

Bình luận (0)
H9
1 tháng 9 2023 lúc 9:25

2) 

a) \(2^x\cdot\left(1+2+2^2+...+2^{2015}\right)+1=2^{2016}\)

Gọi:

\(A=1+2+2^2+...+2^{2015}\)

\(2A=2+2^2+2^3+...+2^{2016}\)

\(A=2^{2016}-1\)

Ta có:

\(2^x\cdot\left(2^{2016}-1\right)+1=2^{2016}\)

\(\Rightarrow2^x\cdot\left(2^{2016}-1\right)=2^{2016}-1\)

\(\Rightarrow2^x=\dfrac{2^{2016}-1}{2^{2016}-1}=1\)

\(\Rightarrow2^x=2^0\)

\(\Rightarrow x=0\)

b) \(8^x-1=1+2+2^2+...+2^{2015}\)

Gọi: \(B=1+2+2^2+...+2^{2015}\)

\(2B=2+2^2+2^3+...+2^{2016}\)

\(B=2^{2016}-1\)

Ta có:

\(8^x-1=2^{2016}-1\)

\(\Rightarrow\left(2^3\right)^x-1=2^{2016}-1\)

\(\Rightarrow2^{3x}-1=2^{2016}-1\)

\(\Rightarrow2^{3x}=2^{2016}\)

\(\Rightarrow3x=2016\)

\(\Rightarrow x=\dfrac{2016}{3}\)

\(\Rightarrow x=672\)

Bình luận (1)
HT
Xem chi tiết
H24
6 tháng 1 2019 lúc 16:20

Không biết 

Bình luận (0)
NA
6 tháng 1 2019 lúc 16:24

mình ko biết vì mình mới lớp 4 .....

Bình luận (0)
KN
6 tháng 1 2019 lúc 16:28

\(A=2+2^2+2^3+...+2^{60}\)

\(\Leftrightarrow2A=2^2+2^3+2^4+...+2^{61}\)

\(\Leftrightarrow2A-A=2^{61}-2\)

\(\Leftrightarrow A+2=2^{61}-2+2\)

\(\Leftrightarrow A+2=2^{61}\left(đpcm\right)\)

Bình luận (0)
H24
Xem chi tiết
H24
9 tháng 9 2016 lúc 20:05

A= 1+2+22+23+....+250

2A=( 1+2+22+....+250 ).2

=2+22+23+...... +251

2A-A = ( 2+22+23+....+251) -( 1+2+25+23+.......+250)

= 251-1

=) 251-1+1 = 251 

h  nha

Bình luận (0)
SK
9 tháng 9 2016 lúc 20:05

\(A=1+2+2^2+2^3+.....+2^{50}\)

\(2A=2+2^2+2^3+2^4+.....+2^{50}\)

\(2A-A=\left(2+2^2+2^3+2^4+.....+2^{51}\right)-\left(1+2+2^2+2^3+....+2^{50}\right)\)

\(A=2^{51}-1\)

Ta có 

A = 251 - 1

A + 1 = 251 - 1 + 1

=> A + 1 = 251

Điều phải chứng minh 

Bình luận (0)
PA
9 tháng 9 2016 lúc 20:06

Ta có : 

 A = 20 + 2 + 22 + 23 + ... + 250

=> 2A=21+...+251

=> 2A-A=A=(21+...+251)-( 20 + 2 + 22 + 23 + ... + 250)

=> A=251-1

Ta có :

A+1=251+(1-1)

=> A+1=251

chính là luỹ thừa của 2

Bình luận (0)
HG
Xem chi tiết
NT
23 tháng 6 2022 lúc 22:31

1: \(3A=3^2+3^3+3^4+...+3^{2018}\)

\(\Leftrightarrow2A=3^{2018}-3\)

\(\Leftrightarrow2A+3=3^{2018}\) là lũy thừa của 3(ĐPCM)

2: \(2A+3=3^{2018}=\left(3^2\right)^{1009}=9^{1009}\) là lũy thừa của 9

Bình luận (0)
HK
Xem chi tiết
PA
18 tháng 7 2017 lúc 9:04

1,

\(A=2^0+2^1+2^2+..+2^{2006}\)

\(=1+2+2^2+...+2^{2016}\)

\(2A=2+2^2+2^3+..+2^{2007}\)

\(2A-A=\left(2+2^2+2^3+..+2^{2007}\right)-\left(1+2+2^2+..+2^{2006}\right)\)

           \(A=2^{2017}-1\)

\(B=1+3+3^2+..+3^{100}\)

\(3B=3+3^2+3^3+..+3^{101}\)

\(3B-B=\left(3+3^2+..+3^{101}\right)-\left(1+3+..+3^{100}\right)\)

\(2B=3^{101}-1\)

\(\Rightarrow B=\frac{3^{100}-1}{2}\)

\(D=1+5+5^2+...+5^{2000}\)

\(5D=5+5^2+5^3+...+5^{2001}\)

\(5D-D=\left(5+5^2+..+5^{2001}\right)-\left(1+5+...+5^{2000}\right)\)

\(4D=5^{2001}-1\)

\(D=\frac{5^{2001}-1}{4}\)

Bình luận (0)
HK
18 tháng 7 2017 lúc 8:34

các bn giúp mk nha càng nhanh càng tốt

ai nhanh mk TC cho

Bình luận (0)
AK
18 tháng 7 2017 lúc 8:58

a) \(2^0+2^1+2^2+...+2^{2006}\)

= \(1+2+2^2+...+2^{2006}\)

Nhân A = 2 cho hai vế:

\(2A=2+2^2+2^3+...+2^{2007}\)

=> \(2A-A=\left(2+2^2+2^3+...+2^{2007}\right)-\left(1+2+2^2+2^{2006}\right)\)

=> \(A=2^{2007}-1\)

Bình luận (0)