1: \(3A=3^2+3^3+3^4+...+3^{2018}\)
\(\Leftrightarrow2A=3^{2018}-3\)
\(\Leftrightarrow2A+3=3^{2018}\) là lũy thừa của 3(ĐPCM)
2: \(2A+3=3^{2018}=\left(3^2\right)^{1009}=9^{1009}\) là lũy thừa của 9
1: \(3A=3^2+3^3+3^4+...+3^{2018}\)
\(\Leftrightarrow2A=3^{2018}-3\)
\(\Leftrightarrow2A+3=3^{2018}\) là lũy thừa của 3(ĐPCM)
2: \(2A+3=3^{2018}=\left(3^2\right)^{1009}=9^{1009}\) là lũy thừa của 9
A=3^1 + 3^2+...+3^120
a) chứng minh A chia hết cho 4 ; 13
b)tìm chữ số tận cùng của A
c)chứng minh 2A - 3 là lũy thừa của 3
Cho A= 3^1 + 3^2 + 3^3 +...+ 3^120
a) Chứng minh A chia hết cho 4; 13 và 82
b) Tìm chữ số tận cùng của A
c) Chứng minh 2A - 3 là lũy thừa của 3
A=3+3^2+....+3^100
Chứng minh rằng 2A+3 là 1 lũy thừa của 3
Cho : C = 1 -3 + 32 - 33 + ..... +32017 + 32018
CMR : 4C - 1 là 1 lũy thừa của 3.
chứng tỏ rằng 3M+1 là 1 luỹ thừa của 4 với M = 1+4+4^2+4^3+...+4^200
1.So sánh:
a.2711 và 818
b. 536 và 1124
c. 202303 và 303202
2. Cho A= 3 + 32 + 33 + ... + 3100
Chứng minh rằng 2A + 3 là một lũy thừa của 3
chứng minh A là một lũy thừa của 2:
A=4+2^2+2^3+2^4+......+2^20
cho A= 1+2^1+2^2 +2^3+...+^2007 a) Tính 2A b) chứng minh: A= 2^2006-1
Câu 3. Tìm chữ số tận cùng của các lũy thừa sau:
b) 3^25
c) 7^42
d)13^202
e) 27^35
f) 19^38
g) 37^22