Tìm min của căn C =căn của x trên căn x -1 giúpminh vs a
giải hộ em
a,Tìm min, max: 4x-16 căn x+4y-22 căn y-4 căn xy+36
b, tìm max :B= 6 cẵn+3/2x+4
c, Tìm Min : C=2/1-x+1/x
bài 1rút gọn bt a, 2 căn 10 - 5 trên 4 - căn 10 b, (2/3 căn 3) - (1/4 căn 18) + (2/5 căn 2) - 1/4 căn 12 bài 2:c/m các đẳng thức : [căn x + căn y trên căn x - căn y) - ( căn x - căn y trên căn x + căn y) : căn xy trên x-y =4 bài 3: cho B={[2 căn x trên căn x +3] + [ căn x trên căn x - 3] - 3[ căn x +3] trên x-9} : { [ 2 căn x -2 trên căn x -3] -1} a, rút gọn b, tìm x để P<-1 Mọi ng giúp mk nhé
Tìm min P=(x+căn x)/x+căn x+1
ĐK: \(x\ge0\)
\(P=\dfrac{x+\sqrt{x}}{x+\sqrt{x}+1}=\dfrac{x+\sqrt{x}+1-1}{x+\sqrt{x}+1}=1-\dfrac{1}{x+\sqrt{x}+1}\ge1-1=0\)
\(\Rightarrow minP=0\Leftrightarrow x=0\)
cho biểu thức A = (2 căn x +x chia x căn x -1 -1 chia căn x - 1 ) chia ( căn x + 2 chia x + căn x +1 )
a) tìm điều kiện xác định của biểu thức A
b) rút gọn biểu thức A
c) tính giá trị A khi x = 9-4 căn 5
d) tìm giá trị lớn nhất của A
a: ĐKXĐ: x>=0; x<>1
b \(A=\left(\dfrac{2\sqrt{x}+x}{x\sqrt{x}-1}-\dfrac{1}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}+2}{x+\sqrt{x}+1}\)
\(=\dfrac{x+2\sqrt{x}-x-\sqrt{x}-1}{x\sqrt{x}-1}\cdot\dfrac{x+\sqrt{x}+1}{\sqrt{x}+2}\)
\(=\dfrac{1}{\sqrt{x}+2}\)
c: Khi x=9-4 căn 5 thì \(A=\dfrac{1}{\sqrt{5}-2+2}=\dfrac{\sqrt{5}}{5}\)
d: căn x+2>=2
=>A<=1/2
Dấu = xảy ra khi x=0
cho A= ( 1/căn x+1 - 2 căn x-2/ x căn x- căn x+x -1):( 1/căn x-1- 2/ x-1)
a) rút gọn A
b)tìm x thuộc Z để A thuộc Z
c)tìm x để A đạt GTNN
giúp mình vs ạ
a: \(A=\left(\dfrac{1}{\sqrt{x}+1}-\dfrac{2\sqrt{x}-2}{x\sqrt{x}+x-\sqrt{x}-1}\right):\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{2}{x-1}\right)\)
\(=\dfrac{x-1-2\sqrt{x}+2}{\left(\sqrt{x}+1\right)\left(x-1\right)}:\dfrac{\sqrt{x}+1-2}{x-1}\)
\(=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(x-1\right)}\cdot\dfrac{x-1}{\sqrt{x}-1}=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)
b: Để A là số nguyên thì \(\sqrt{x}-1⋮\sqrt{x}+1\)
=>\(\sqrt{x}+1-2⋮\sqrt{x}+1\)
=>căn x+1 thuộc {1;2}
=>căn x thuộc {0;1}
mà x<>1
nên x=0
a )max -13 - căn bậc hai của 2x-13
b) 5-x/3=y+2/4 và x+y=-1
c)tìm x 3/2x+7=5/3x+9
d)C=1,01+1,03+1,05+...+2,09
e)min(1*2)^2+ căn bậc hai của x+1
g) max : -11-căn bậc hai của 9x-18 + căn bậc hai x-2
hơi lộn xôn nhưng cố gắng giúp mik nhé !
Tìm min A=căn(x^2-x+3) + căn(x^2+x+3)
\(A=\sqrt{\left(\dfrac{1}{2}-x\right)^2+\left(\dfrac{\sqrt{11}}{2}\right)^2}+\sqrt{\left(\dfrac{1}{2}+x\right)^2+\left(\dfrac{\sqrt{11}}{2}\right)^2}\)
\(\ge\sqrt{\left(\dfrac{1}{2}-x+\dfrac{1}{2}+x\right)^2+\left(\dfrac{\sqrt{11}}{2}+\dfrac{\sqrt{11}}{2}\right)^2}\)
\(=\sqrt{12}\)
"=" xảy ra khi x = 0
Cho x,y,z là các số thực dương : xy+yz+xz=1. Tìm min của P = ( căn( x2 +1) + căn(y2 +1) + căn(z2 +1))/(x+y+z)
\(\frac{\sqrt{x^2+1}+\sqrt{y^2+1}+\sqrt{z^2+1}}{\sqrt{x+y+z}}\)
Đặng Viết Thái tử đúng rồi còn mẫu không có căn
\(x = { \sqrt{x^2+1} + \sqrt{y^2+1} + \sqrt{z^2+1} \over x + y+z}\)
R= ( 3 căn x/ căn x +2 + căn x/căn x-2 - 3x-5 căn x/ 4-x) : (2 căn x -1/căn x -2 -1
a/ Rút gon. b/ Tính giá trị của biểu thức R khi x = 49. c/ Tìm x biết R= 1/3. d/ Tìm x biết R>0
\(R=\left(\dfrac{3\sqrt{x}}{\sqrt{x}+2}+\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{3x-5\sqrt{x}}{4-x}\right):\left(\dfrac{2\sqrt{x}-1}{\sqrt{x}-2}-1\right)\left(ĐK:x\ge0,x\ne4\right)\\ =\left(\dfrac{3\sqrt{x}}{\sqrt{x}+2}+\dfrac{\sqrt{x}}{\sqrt{x}-2}+\dfrac{3x-5\sqrt{x}}{\sqrt{x}^2-2^2}\right):\dfrac{2\sqrt{x}-1-\left(\sqrt{x}-2\right)}{\sqrt{x}-2}\)
\(=\dfrac{3\sqrt{x}\left(\sqrt{x}-2\right)+\sqrt{x}\left(\sqrt{x}+2\right)+3x-5\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}.\dfrac{\sqrt{x}-2}{2\sqrt{x}-1-\sqrt{x}+2}\\ =\dfrac{3x-6\sqrt{x}+x+2\sqrt{x}+3x-5\sqrt{x}}{\sqrt{x}+2}.\dfrac{1}{\sqrt{x}+1}\)
\(=\dfrac{7x-9\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}+1\right)}\)
Bạn xem lại đề nhé, rút gọn thường ra kết quả rất đẹp chứ không dài như kết quả này đâu ạ.
Giúp với ạ mình cảm ơn ai làm được mình cho 100sao