Những câu hỏi liên quan
TH
Xem chi tiết
AH
30 tháng 9 2017 lúc 23:06

Lời giải:

Đặt \((\sqrt{x-y},\sqrt{x+y})=(b,a)\)

HPT trở thành: \(\left\{\begin{matrix} a-b=2(1)\\ \sqrt{\frac{a^4+b^4}{2}}+ab=4(2)\end{matrix}\right.\)

\((2)\Leftrightarrow \sqrt{\frac{a^4+b^4}{2}}=4-ab\). Bình phương hai vế:
\(\Rightarrow \frac{a^4+b^4}{2}=16+a^2b^2-8ab\)

\(\Leftrightarrow a^4+b^4-2a^2b^2=32-16ab\)

\(\Leftrightarrow (a^2-b^2)^2=32-16ab\Leftrightarrow 4(a+b)^2=32-16ab\) (do \(a-b=2\) )

\(\Leftrightarrow (a+b)^2=8-4ab\)

Thay \(a=b+2\Rightarrow (2b+2)^2=8-4b(b+2)\)

\(\Leftrightarrow (b+1)^2=2-b(b+2)\Leftrightarrow 2b^2+4b-1=0\)

\(\Rightarrow b=\frac{-2+\sqrt{6}}{2}\) (do \(b\geq 0\))

Từ đó kéo theo \(a=\frac{2+\sqrt{6}}{2}\). Từ đây suy ra \((x,y)=(\frac{5}{2},\sqrt{6})\)

Bình luận (0)
NT
Xem chi tiết
VL
Xem chi tiết
KK
6 tháng 9 2021 lúc 16:18

b. 2 + \(\sqrt{2x-1}=x\)       ĐKXĐ: \(x\ge0,5\)

<=> \(\sqrt{2x-1}\) = x - 2

<=> 2x - 1 = (x - 2)2

<=> 2x - 1 = x2 - 4x + 4

<=> -x2 + 2x + 4x - 4 - 1 = 0

<=> -x2 + 6x - 5 = 0

<=> -x2 + 5x + x - 5 = 0

<=> -(-x2 + 5x + x - 5) = 0

<=> x2 - 5x - x + 5 = 0

<=> x(x - 5) - (x - 5) = 0

<=> (x - 1)(x - 5) = 0

<=> \(\left[{}\begin{matrix}x-1=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=5\end{matrix}\right.\)

Bình luận (1)
HP
Xem chi tiết
NN
Xem chi tiết
NL
9 tháng 9 2020 lúc 21:23

ĐKXĐ: ...

\(\Leftrightarrow3\left(2\sqrt{x+2}+\sqrt{3-x}\right)=3x+1+4\sqrt{-x^2+x+6}\)

Đặt \(2\sqrt{x+2}+\sqrt{3-x}=t>0\)

\(\Rightarrow t^2=4\left(x+2\right)+3-x+4\sqrt{\left(x+2\right)\left(3-x\right)}=3x+11+4\sqrt{-x^2+x+6}\)

Pt trở thành:

\(3t=t^2-10\)

\(\Leftrightarrow t^2-3t-10=0\Rightarrow\left[{}\begin{matrix}t=5\\t=-2\left(l\right)\end{matrix}\right.\)

\(\Rightarrow2\sqrt{x+2}+\sqrt{3-x}=5\)

Ta có: \(VT=2\sqrt{x+2}+\sqrt{3-x}\le\sqrt{\left(2^2+1^2\right)\left(x+2+3-x\right)}=5\)

\(\Rightarrow VT\le VP\)

Dấu "=" xảy ra khi và chỉ khi: \(\frac{\sqrt{x+2}}{2}=\sqrt{3-x}\Leftrightarrow x=2\)

Vậy pt có nghiệm duy nhất \(x=2\)

Bình luận (0)
MT
Xem chi tiết
KT
Xem chi tiết
H24
21 tháng 11 2016 lúc 22:39

Câu 1

ta có

phương trình tương đương

\(x+y+z+4-2\sqrt{x-2}-4\sqrt{y-3}-6\sqrt{z-5}=0\)

\(\left(x-2-2\sqrt{x-2}+1\right)+\left(y-3-4\sqrt{y-3}+4\right)+\left(z-5-6\sqrt{z-5}+9\right)=0\)

\(\left(\sqrt{x-2}-1\right)^2+\left(\sqrt{y-3}-2\right)^2+\left(\sqrt{z-5}-3\right)^2=0\)

Nhận thấy \(\begin{cases}\\\\\end{cases}\begin{cases}\left(\sqrt{x-2}-1\right)^2\ge0\\\left(\sqrt{y-3}-2\right)^2\ge0\\\left(\sqrt{z-5}-3\right)^2\ge0\end{cases}\)

vậy để thỏa mãn pt, ta cần cả 3 biểu thức trên bằng o hay x = 3 ; y = 7 ; z = 14

Bình luận (0)
TP
Xem chi tiết
MA
2 tháng 11 2016 lúc 18:20

\(\hept{\begin{cases}x+\sqrt{x^2+1}=y+\sqrt{y^2-1}\left(1\right)\\x^2+y^2-xy=1\left(2\right)\end{cases}}\) \(DK:y^2\ge1\) 

Đặt: \(x^2+\sqrt{x^2+1}=y^2+\sqrt{y^2-1}=t\) . Vì: \(\sqrt{x^2+1}>\sqrt{x^2}=\left|x\right|\ge-x\Rightarrow t=\sqrt{x^2+1}+x>0\)  

\(\Leftrightarrow\hept{\begin{cases}x-t=\sqrt{x^2+1}\\y-t=\sqrt{y^2-1}\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2-2xt+t^2=x^2+1\\y^2-2yt+t^2=y^2-1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{t^2-1}{2t}\\y=\frac{t^2+1}{2t}\end{cases}}\) 

\(\left(2\right)\Rightarrow\left(\frac{t^2-1}{2t}\right)^2+\left(\frac{t^2+1}{2t}\right)^2-\left(\frac{t^2-1}{2t}\right)\left(\frac{t^2+1}{2t}\right)=1\) 

\(\Leftrightarrow\frac{t^4-2t^2+1+t^4+2t^2+1-t^4+1}{4t^2}=1\) 

\(\Leftrightarrow t^4+3=4t^2\Leftrightarrow t^4-4t^2+3=0\Leftrightarrow\orbr{\begin{cases}t^2=1\\t^2=3\end{cases}}\Leftrightarrow\orbr{\begin{cases}t=1\\t=\sqrt{3}\end{cases}}\) 

Với \(t=1\Rightarrow\hept{\begin{cases}x=0\\y=1\end{cases}}\left(TM\right)\)

Với \(t=\sqrt{3}\Rightarrow\hept{\begin{cases}x=\frac{1}{\sqrt{3}}\\y=\frac{2}{\sqrt{3}}\end{cases}}\left(TM\right)\) 

Vậy:....

Bình luận (0)
AN
2 tháng 11 2016 lúc 17:50

Xét pt (1) ta có

PT (1) <=> x - y = \(\sqrt{y^2-1}-\sqrt{x^2+1}\)

<=> xy = \(1\sqrt{\left(x^2+1\right)\left(y^2-1\right)}\)

<=> y2 - x2 = 1

Thế vào pt (2) ta được

y2 + x2 - xy = y2 - x2

<=> x(2x - y) = 0

Tới đây thì đơn giản rồi

Bình luận (0)
H24
Xem chi tiết
UK
7 tháng 11 2017 lúc 20:22

Viết nhầm biến thôi :v. Sửa''ss

\(\dfrac{\left(x+y\right)^2}{4}+\dfrac{x+y}{2}\ge x\sqrt{y}+y\sqrt{x}\)

Ta có: \(VT\ge\dfrac{4xy}{4}+\dfrac{x}{2}+\dfrac{x}{2}=\dfrac{xy}{2}+\dfrac{xy}{2}+\dfrac{x}{2}+\dfrac{y}{2}\)

\(\Leftrightarrow VT\ge2\sqrt{\dfrac{xy}{2}.\dfrac{x}{2}}+2\sqrt{\dfrac{xy}{2}.\dfrac{y}{2}}\)

\(\Leftrightarrow VT\ge x\sqrt{y}+y\sqrt{x}\)(đpcm)

Đẳng thức xảy ra khi \(\left[{}\begin{matrix}x=y=1\\x=y=0\end{matrix}\right.\)

Bình luận (2)
HD
7 tháng 11 2017 lúc 18:27

sai đề rồi

Bình luận (0)