Chương III - Hệ hai phương trình bậc nhất hai ẩn

TH

giải hệ phương trình:\(\left\{{}\begin{matrix}\sqrt{x+y}-\sqrt{x-y}=2\\\sqrt{x^2+y^2}+\sqrt{x^2-y^2}=4\end{matrix}\right.\)

AH
30 tháng 9 2017 lúc 23:06

Lời giải:

Đặt \((\sqrt{x-y},\sqrt{x+y})=(b,a)\)

HPT trở thành: \(\left\{\begin{matrix} a-b=2(1)\\ \sqrt{\frac{a^4+b^4}{2}}+ab=4(2)\end{matrix}\right.\)

\((2)\Leftrightarrow \sqrt{\frac{a^4+b^4}{2}}=4-ab\). Bình phương hai vế:
\(\Rightarrow \frac{a^4+b^4}{2}=16+a^2b^2-8ab\)

\(\Leftrightarrow a^4+b^4-2a^2b^2=32-16ab\)

\(\Leftrightarrow (a^2-b^2)^2=32-16ab\Leftrightarrow 4(a+b)^2=32-16ab\) (do \(a-b=2\) )

\(\Leftrightarrow (a+b)^2=8-4ab\)

Thay \(a=b+2\Rightarrow (2b+2)^2=8-4b(b+2)\)

\(\Leftrightarrow (b+1)^2=2-b(b+2)\Leftrightarrow 2b^2+4b-1=0\)

\(\Rightarrow b=\frac{-2+\sqrt{6}}{2}\) (do \(b\geq 0\))

Từ đó kéo theo \(a=\frac{2+\sqrt{6}}{2}\). Từ đây suy ra \((x,y)=(\frac{5}{2},\sqrt{6})\)

Bình luận (0)

Các câu hỏi tương tự
HB
Xem chi tiết
TA
Xem chi tiết
HG
Xem chi tiết
NT
Xem chi tiết
NA
Xem chi tiết
VD
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
TN
Xem chi tiết