mn giúp em với, e đang cần gấp
Mn giúp e với ạ em đang cần gấp mong mn giúp
Mn giúp em với ạ e đang cần gấp
Mn giúp em 3 câu này với ạ e đang cần gấp
\(x+\sqrt{4-x^2}=2\)
\(\Leftrightarrow4-x^2=\left(2-x\right)^2\)
\(\Leftrightarrow4-x^2=4-8x+x^2\)
\(\Leftrightarrow4-x^2-4+8x-x^2=0\)
\(\Leftrightarrow8x-2x^2=0\)
\(\Leftrightarrow2x\left(4-x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=0\\4-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)
\(x+\sqrt{1-x^2}=1\)
\(\Leftrightarrow1-x^2=\left(1-x\right)^2\)
\(\Leftrightarrow1-x^2=1-2x+x^2\)
\(\Leftrightarrow1-x^2-1+2x-x^2=0\)
\(\Leftrightarrow2x-2x^2=0\)
\(\Leftrightarrow2x\left(1-x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=0\\1-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
em hãy tả công viên nước Thái Bình. mn giúp e với e đang cần gấp
Công viên nước ở Thái Bình thật đẹp.Có những cái cầu trượt cong queo trượt xuống hồ bơi.
Mn giúp em với ạ Plsss E đang cần rất gấp Đi màk ạ plssss
Mn giúp e làm mấy câu còn lại với ạ e đang cần gấp. Em cảm ơn trc ạ
7. How often does he go to the library?
8. ....is the shortest student in his class.
9......is her address?
10... is shorter than Ba.
7 how often does he go to the library
8 nga is the shortest student in the class
9 what is her adress
10 hoa is shorter than ba
giúp e với mn!!!
e đang cần gấp >-<
mn ơi giải giúp em vs ạ e đang cần gấp
1) \(\sqrt{2x-5}=7\)
\(\left(\sqrt{2x-5}\right)^2=7^2\)
\(2x-5=49\)
\(2x=54\)
\(x=27\)
2) \(3+\sqrt{x-2}=4\)
\(\sqrt{x-2}=1\)
\(\left(\sqrt{x-2}\right)^2=1^2\)
\(x-2=1\)
\(x=3\)
1) \(\sqrt{2x-5}=7\left(đk:x\ge\dfrac{5}{2}\right)\)
\(\Leftrightarrow2x-5=49\Leftrightarrow2x=54\Leftrightarrow x=27\left(tm\right)\)
2) \(3+\sqrt{x-2}=4\left(đk:x\ge2\right)\)
\(\Leftrightarrow\sqrt{x-2}=1\Leftrightarrow x-2=1\Leftrightarrow x=3\)
3) \(\Leftrightarrow\sqrt{\left(x-1\right)^2}=1\Leftrightarrow\left|x-1\right|=1\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=1\\x-1=-1\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=0\end{matrix}\right.\)
4) \(\Leftrightarrow\sqrt{\left(x-2\right)^2}=1\Leftrightarrow\left|x-2\right|=1\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=1\\x-2=-1\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)
5) \(\Leftrightarrow\sqrt{\left(2x-1\right)^2}=\sqrt{\left(x+4\right)^2}\)
\(\Leftrightarrow\left|2x-1\right|=\left|x+4\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=x+4\\2x-1=-x-4\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-1\end{matrix}\right.\)
6) \(ĐK:x\ge-2\)
\(\Leftrightarrow5\sqrt{x+2}-3\sqrt{x+2}-\sqrt{x+2}=\sqrt{x+7}\)
\(\Leftrightarrow\sqrt{x+2}=\sqrt{x+7}\)
\(\Leftrightarrow x+2=x+7\Leftrightarrow2=7\left(VLý\right)\)
Vậy \(S=\varnothing\)
7) \(ĐK:x\ge-1\)
\(\Leftrightarrow5\sqrt{2x+1}+3\sqrt{x+1}=4\sqrt{x+1}+4\sqrt{2x+1}\)
\(\Leftrightarrow\sqrt{2x+1}=\sqrt{x+1}\)
\(\Leftrightarrow2x+1=x+1\Leftrightarrow x=0\left(tm\right)\)
\(3,\sqrt{x^2-2x+1}=1\left(x\in R\right)\\ \Leftrightarrow\sqrt{\left(x-1\right)^2}=1\\ \Leftrightarrow\left|x-1\right|=1\Leftrightarrow\left[{}\begin{matrix}x-1=1\left(x\ge1\right)\\x-1=-1\left(x< 1\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\left(tm\right)\\x=0\left(tm\right)\end{matrix}\right.\)
\(4,ĐK:x\in R\\ PT\Leftrightarrow\sqrt{\left(x-2\right)^2}=1\\ \Leftrightarrow\left|x-2\right|=1\Leftrightarrow\left[{}\begin{matrix}x-2=1\left(x\ge2\right)\\x-2=-1\left(x< 2\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\left(tm\right)\\x=1\left(tm\right)\end{matrix}\right.\)
\(5,ĐK:x\in R\\ PT\Leftrightarrow\left|2x-1\right|=\left|x+4\right|\\ \Leftrightarrow\left[{}\begin{matrix}2x-1=x+4\\1-2x=x+4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-1\end{matrix}\right.\)
\(6,ĐK:x\ge-2\\ PT\Leftrightarrow5\sqrt{x+2}-3\sqrt{x+2}-\sqrt{x+2}=\sqrt{x+7}\\ \Leftrightarrow\sqrt{x+2}=\sqrt{x+7}\Leftrightarrow x+2=x+7\Leftrightarrow0x=5\Leftrightarrow x\in\varnothing\)
\(7,ĐK:x\ge-1\\ PT\Leftrightarrow5\sqrt{x+2}+3\sqrt{x+1}=4\sqrt{x+1}+4\sqrt{x+2}\\ \Leftrightarrow\sqrt{x+2}=\sqrt{x+1}\\ \Leftrightarrow x+2=x+1\\ \Leftrightarrow0x=-1\Leftrightarrow x\in\varnothing\)