Những câu hỏi liên quan
NS
Xem chi tiết
TG
29 tháng 7 2020 lúc 21:29

Ta có: \(\left(a+b\right)^3=a^3+3a^2b+3ab^2+b^3=a^3+3ab\left(a+b\right)+b^3\) (1)

Thay a + b = 1 vào (1) ta được:

\(1^3=a^3+3ab.1+b^3\)

\(1^3=a^3+3ab+b^3\)

Hay: \(a^3+3ab+b^3=1\)

=> đpcm

Bình luận (0)
TH
Xem chi tiết
NL
Xem chi tiết
TK
Xem chi tiết
MT
10 tháng 6 2015 lúc 16:43

ta có :

(a+b)3=a3+3a2b+3ab2+b3

(a+b)3=a3+3ab(a+b)+b(1)

thay a+b=1 vào (1) ta được :

13=a3+3ab.1+b3

<=>1=a3+3ab+b3

<=>a3+b3=1-3ab

Bình luận (0)
HT
29 tháng 4 2019 lúc 15:47

a^3+b^3+3ab(a+b) =(a+b)^3 

mà a+b=1 suy ra a^3+b^3+3ab=1

suy ra a^3+b^3=1-3ab

Bình luận (0)
KT
29 tháng 6 2022 lúc 9:16

ta có :

(a+b)3=a3+3a2b+3ab2+b3

(a+b)3=a3+3ab(a+b)+b(1)

thay a+b=1 vào (1) ta được :

13=a3+3ab.1+b3

<=>1=a3+3ab+b3

<=>a3+b3=1-3ab

Bình luận (0)
TH
Xem chi tiết
DH
24 tháng 7 2017 lúc 10:32

\(a^3-b^3=1+3ab\)

Biến đổi VT ta được :

\(VT=\left(a-b\right)\left(a^2+ab+b^2\right)=a^2-2ab+b^2+3ab=\left(a+b\right)^2+3ab=1+3ab=VP\)

Vậy \(a^3-b^3=1+3ab\)

Bình luận (0)
SF
24 tháng 7 2017 lúc 10:33

Cho  a - b = 1 . Chứng minh a^3 - b^3 = 1 + 3ab

Toán lớp 8 Hằng đẳng thức 

a3b3=1+3ab

Biến đổi VT ta được :

VT=(ab)(a2+ab+b2)=a22ab+b2+3ab=(a+b)2+3ab=1+3ab=VP

suy ra................

k mình nha

 
Bình luận (0)
TN
Xem chi tiết
H24
14 tháng 8 2021 lúc 1:41

\(\left(a-b\right)^3+3ab\left(a-b\right)=a^3-b^3\)

\(\Leftrightarrow a^3-b^3-3a^2b+3ab^2+3ab\left(a-b\right)=a^3-b^3\)

\(\Leftrightarrow a^3-b^3-3ab\left(a-b\right)+3ab\left(a-b\right)=a^3-b^3\)

\(\Leftrightarrow a^3-b^3=a^3-b^3\) (luôn đúng)

Bình luận (0)
BT
Xem chi tiết
AL
Xem chi tiết
NL
5 tháng 8 2020 lúc 23:48

\(3=a+b+ab\le a+b+\frac{\left(a+b\right)^2}{4}\Rightarrow\left(a+b\right)^2+4\left(a+b\right)-12\ge0\)

\(\Leftrightarrow\left(a+b-2\right)\left(a+b+6\right)\ge0\Rightarrow a+b\ge2\)

Đặt vế trái của BĐT là P

\(P=\frac{4a\left(a+1\right)+4b\left(b+1\right)}{\left(a+1\right)\left(b+1\right)}+2ab-\sqrt{7-3\left(3-a-b\right)}\)

\(P=\frac{4\left(a^2+b^2+a+b\right)}{ab+a+b+1}+2ab-\sqrt{3\left(a+b\right)-2}\)

\(P=a^2+b^2+a+b+2ab-\sqrt{3\left(a+b\right)-2}\)

\(P=\left(a+b\right)^2+a+b-\sqrt{3\left(a+b\right)-2}\)

Đặt \(\sqrt{3\left(a+b\right)-2}=x\Rightarrow\left\{{}\begin{matrix}x\ge2\\a+b=\frac{x^2+2}{3}\end{matrix}\right.\)

\(\Rightarrow P=\left(\frac{x^2+2}{3}\right)^2+\frac{x^2+2}{3}-x=\frac{x^4+7x^2-9x+10}{9}\)

\(P=\frac{x^4+7x^2-9x-26+36}{9}=\frac{\left(x-2\right)\left(x^3+2x^2+11x+13\right)}{9}+4\ge4\) ; \(\forall x\ge2\) (đpcm)

Dấu "=" xảy ra khi \(x=2\) hay \(a=b=1\)

Bình luận (0)
TP
Xem chi tiết
AH
31 tháng 10 2018 lúc 21:02

Lời giải:

\(a^3+b^3=3ab-1\)

\(\Leftrightarrow a^3+b^3-3ab+1=0\)

\(\Leftrightarrow (a+b)^3-3ab(a+b)-3ab+1=0\)

\(\Leftrightarrow (a+b)^3+1-3ab(a+b+1)=0\)

\(\Leftrightarrow (a+b+1)[(a+b)^2-(a+b)+1]-3ab(a+b+1)=0\)

\(\Leftrightarrow (a+b+1)(a^2+b^2+1-ab-a-b)=0\)

Vì $a,b>0$ nên $a+b+1\neq 0$

Do đó:

\(a^2+b^2+1-a-b-ab=0\)

\(\Leftrightarrow \frac{(a-b)^2+(a-1)^2+(b-1)^2}{2}=0\)

\(\Rightarrow a=b=1\)

Do đó: \(a^{2018}+b^{2019}=1+1=2\)

Ta có đpcm.

Bình luận (5)