Những câu hỏi liên quan
TT
Xem chi tiết
LP
Xem chi tiết
AH
1 tháng 12 2018 lúc 0:19

Lời giải:

Trước tiên để PT có 2 nghiệm phân biệt thì:

\(\Delta'=m^2-(m^2-2m+1)>0\Leftrightarrow 2m-1>0\Leftrightarrow m> \frac{1}{2}(*)\)

Theo định lý Vi-et, với $x_1,x_2$ là 2 nghiệm của phương trình thì:
\(\left\{\begin{matrix} x_1+x_2=2m\\ x_1x_2=m^2-2m+1=(m-1)^2\end{matrix}\right.\)

Để 2 nghiệm là nghiệm dương thì:

\(\left\{\begin{matrix} x_1+x_2=2m>0\\ x_1x_2=(m-1)^2>0\end{matrix}\right.\) \(\Leftrightarrow \left\{\begin{matrix} m> 0\\ m\neq 1\end{matrix}\right.(**)\)

Từ \((*);(**)\Rightarrow m> \frac{1}{2}; m\neq 1\) là điều kiện để pt có 2 nghiệm dương phân biệt.

Bình luận (0)
TV
Xem chi tiết
NA
2 tháng 4 2023 lúc 10:58

\(x^2-2mx+2m-3=0\left(1\right)\)

Để phương trình (1) có nghiệm thì:

\(\Delta\ge0\Rightarrow\left(-2m\right)^2-4\left(2m-3\right)\ge0\)

\(\Leftrightarrow4m^2-8m+12\ge0\)

\(\Leftrightarrow\left(2m-2\right)^2+8\ge0\) (luôn đúng)

Vậy \(\forall m\) thì phương trình (1) có nghiệm.

Theo định lí Viete ta có:

\(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=2m-3\end{matrix}\right.\)

\(\Rightarrow x_1+x_2-x_1x_2=3\)

\(\Rightarrow\left(x_1x_2-x_1-x_2+1\right)+2=0\)

\(\Rightarrow\left(x_1-1\right)\left(x_2-2\right)=-2\)

Vì x1, x2 là các số nguyên nên x1-1 , x2-1 là các ước số của -2. Lập bảng:

x1-11-12-2
x2-1-22-11
x1203-1
x2-1302

Với \(\left(x_1;x_2\right)=\left(3;0\right),\left(0;3\right)\) \(\Rightarrow\left\{{}\begin{matrix}2m=0+3=3\\2m-3=0.3=0\end{matrix}\right.\Rightarrow m=\dfrac{3}{2}\)

Với \(\left(x_1;x_2\right)=\left(2;-1\right),\left(-1;2\right)\)

\(\Rightarrow\left\{{}\begin{matrix}2m=2-1=1\\2m-3=2.\left(-1\right)=-2\end{matrix}\right.\Rightarrow m=\dfrac{1}{2}\)

Vậy m=1/2 hay m=3/2 thì pt trên có 2 nghiệm là các số nguyên.

 

Bình luận (0)
DY
Xem chi tiết
NL
11 tháng 9 2021 lúc 21:28

\(x^3-x^2+2mx-2m=0\)

\(\Leftrightarrow x^2\left(x-1\right)+2m\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2+2m\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x^2=-2m\end{matrix}\right.\)

Để pt có 3 nghiệm \(\Rightarrow-2m>0\Rightarrow m< 0\)

a. Do vai trò 3 nghiệm như nhau, ko mất tính tổng quát giả sử \(x_1=1\) và \(x_2;x_3\) là nghiệm của \(x^2+2m=0\) 

Để pt có 3 nghiệm pb \(\Rightarrow\left\{{}\begin{matrix}-2m>0\\-2m\ne1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m< 0\\m\ne-\dfrac{1}{2}\end{matrix}\right.\)

Khi đó: \(x_2+x_3=0\Rightarrow x_1+x_2+x_3=1\ne10\) với mọi m

\(\Rightarrow\) Không tồn tại m thỏa mãn yêu cầu

b.

Giả sử pt có 3 nghiệm, khi đó \(\left[{}\begin{matrix}x_2=-\sqrt{-2m}< 0< 1\\x_3=\sqrt{-2m}\end{matrix}\right.\)

\(\Rightarrow\) Luôn có 1 nghiệm của pt âm \(\Rightarrow\) không tồn tại m thỏa mãn

Em coi lại đề bài

Bình luận (0)
MV
Xem chi tiết
NL
28 tháng 2 2023 lúc 13:20

\(\Delta'=m^2-2m+3=\left(m-1\right)^2+2>0\) ; \(\forall m\)

Vậy phương trình đã cho có 2 nghiệm phân biệt với mọi m

Bình luận (0)
BB
Xem chi tiết
PD
27 tháng 3 2021 lúc 20:10

a/ \(\Delta =(-2m)^2-4.1.(2m-3)=4m^2-8m+12=4m^2-8m+4+8=(2m-2)^2+8>0\)

\(\to\) Pt có nghiệm với mọi m

Theo Viét

\(\begin{cases}x_1+x_2=2m\\x_1x_2=2m-3\end{cases}\)

\(x_1^2+x_2^2\\=(x_1+x_2)^2-2x_1x_2\\=(2m)^2-2.(2m-3)\\=4m^2-4m+6\)

\(\to 4m^2-4m+6=6\)

\(\leftrightarrow 4m(m-1)=0\)

\(\leftrightarrow m=0\quad or\quad m-1=0\)

\(\leftrightarrow m=0(tm)\quad or\quad m=1(tm)\)

b/ Pt có 2 nghiệm cùng dấu

\(\to\begin{cases}\Delta\ge 0\\P>0\end{cases}\)

\(\to 2m-3>0\\\leftrightarrow 2m>3\\\leftrightarrow m>\dfrac{3}{2}\)

Vì pt có 2 nghiệm với mọi m

\(\to m>\dfrac{3}{2}\)

Vậy \(m>\dfrac{3}{2}\)

Bình luận (0)
NK
Xem chi tiết
NL
21 tháng 1 2024 lúc 22:40

\(\Delta'=m^2-\left(m^2+2m-6\right)=-2m+6\)

a.

Pt có nghiệm khi \(-2m+6\ge0\Rightarrow m\le3\)

b.

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=m^2+2m-6\end{matrix}\right.\)

c.

\(x_1x_2=3x_1+3x_2-1\)

\(\Leftrightarrow x_1x_2=3\left(x_1+x_2\right)-1\)

\(\Leftrightarrow m^2+2m-6=3.2m-1\)

\(\Leftrightarrow m^2-4m-5=0\Rightarrow\left[{}\begin{matrix}m=-1\\m=5>3\left(loại\right)\end{matrix}\right.\)

Bình luận (0)
H24
Xem chi tiết
HP
5 tháng 1 2021 lúc 17:22

1.

Yêu cầu bài toán thỏa mãn khi:

\(\left\{{}\begin{matrix}\Delta=25-12m>0\\x_1^2+x_2^2< 17\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{25}{12}\\\left(x_1+x_2\right)^2-2x_1x_2< 17\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{25}{12}\\\left(2m-3\right)^2-2\left(m^2-4\right)< 17\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{25}{12}\\2m^2-12m< 0\end{matrix}\right.\)

\(\Leftrightarrow0< m< \dfrac{25}{12}\)

Bình luận (0)
HP
5 tháng 1 2021 lúc 17:33

3.

Yêu cầu bài toán thỏa mãn khi:

\(\left\{{}\begin{matrix}\Delta'=11-m>0\\x_1+x_2>0\\x_1x_2>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 11\\6>0\\m-2>0\end{matrix}\right.\)

\(\Leftrightarrow2< m< 11\)

Bình luận (0)
MV
Xem chi tiết
NL
17 tháng 9 2020 lúc 0:08

\(x^3-2mx^2+m^2x+x-m=0\)

\(\Leftrightarrow x\left(x-m\right)^2+x-m=0\)

\(\Leftrightarrow\left(x-m\right)\left(x^2-mx+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=m\\x^2-mx+1=0\left(1\right)\end{matrix}\right.\)

Pt có 3 nghiệm pb khi và chỉ khi (1) có 2 nghiệm pb khác m

\(\Leftrightarrow\left\{{}\begin{matrix}m^2-m^2+1\ne0\\\Delta=m^2-4>0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}m>2\\m< -2\end{matrix}\right.\)

Do vai trò của \(x_1;x_3\) là như nhau, ta chỉ cần xét 2 trường hợp:

TH1: \(x_1=m\)\(x_2;x_3\) là nghiệm của 1

\(\Rightarrow m+x_3=2x_2\)

Kết hợp Viet ta được: \(\left\{{}\begin{matrix}x_2+x_3=m\\2x_2-x_3=m\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_2=\frac{2m}{3}\\x_3=\frac{m}{3}\end{matrix}\right.\)

\(x_2x_3=1\Rightarrow\frac{2m^2}{9}=1\Rightarrow m=\pm\frac{3\sqrt{2}}{2}\)

TH2: \(x_2=m\)\(x_1;x_3\) là nghiệm của (1)

\(\Rightarrow x_1+x_3=2m\)

Kết hợp Viet ta được: \(\left\{{}\begin{matrix}x_1+x_3=m\\x_1+x_3=2m\end{matrix}\right.\) \(\Leftrightarrow m=0\left(ktm\right)\)

Bình luận (0)