\(\sqrt{15-x}-\sqrt{3-x}=6\)
B=\(\dfrac{\sqrt{x}}{\sqrt{x}+3}+\dfrac{6}{\sqrt{x}-1}-\dfrac{\sqrt{x}+15}{x+2\sqrt{ }x}-3\) Chứng minh B=\(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\) giúp mik câu này vs ạ mik đang cần gấp
\(\dfrac{\sqrt{27}-\sqrt{15}}{3-\sqrt{5}}+\dfrac{4}{2+\sqrt{3}}-\dfrac{6}{\sqrt{3}}\)
\(\dfrac{x-y}{\sqrt{x}+\sqrt{y}}-\dfrac{x\sqrt{y}+y\sqrt{x}}{\sqrt{xy}}\)
`[\sqrt{27}-\sqrt{15}]/[3-\sqrt{5}]+4/[2+\sqrt{3}]-6/\sqrt{3}`
`=[\sqrt{3}(3-\sqrt{5})]/[3-\sqrt{5}]+[4(2-\sqrt{3})]/[4-3]-[2\sqrt{3}.\sqrt{3}]/\sqrt{3}`
`=\sqrt{3}+8-4\sqrt{3}-2\sqrt{3}`
`=8-5\sqrt{3}`
_______________________________________
`[x-y]/[\sqrt{x}+\sqrt{y}]-[x\sqrt{y}+y\sqrt{x}]/\sqrt{xy}` `ĐK: x,y > 0`
`=[(\sqrt{x}-\sqrt{y})(\sqrt{x}+\sqrt{y})]/[\sqrt{x}+\sqrt{y}]-[\sqrt{xy}(\sqrt{x}+\sqrt{y})]/\sqrt{xy}`
`=\sqrt{x}-\sqrt{y}-\sqrt{x}-\sqrt{y}`
`=-2\sqrt{y}`
Phân tích thành nhân tử
\(x+\sqrt{x}\)
\(x-\sqrt{x}\)
\(a+3\sqrt{a}-10\)
\(x\sqrt{x}+\sqrt{x}-x-1\)
\(x+\sqrt{x}-2\)
\(x-5\sqrt{x}+6\)
\(x\sqrt{x}-1\)
\(x\sqrt{x}-x+\sqrt{x}-1\)
\(x+2\sqrt{x}-15\)
\(x-2\sqrt{x}-3\)
\(a+\sqrt{a}-6\)
\(x-16\)
\(x+2\sqrt{x}+1\)
\(x-1\)
\(x-2\sqrt{x}+1\)
\(a\sqrt{a}+1\)
\(a+\sqrt{a}-2\)
\(2x-5\sqrt{x}+3\)
\(x-9\)
\(x+\sqrt{x}-6\)
1. $x+\sqrt{x}=\sqrt{x}(\sqrt{x}+1)$
2. $x-\sqrt{x}=\sqrt{x}(\sqrt{x}-1)$
3. $a+3\sqrt{a}-10=(a-2\sqrt{a})+(5\sqrt{a}-10)$
$=\sqrt{a}(\sqrt{a}-2)+5(\sqrt{a}-2)=(\sqrt{a}+5)(\sqrt{a}-2)$
4. $x\sqrt{x}+\sqrt{x}-x-1=(x\sqrt{x}+\sqrt{x})-(x+1)=\sqrt{x}(x+1)-(x+1)$
$=(x+1)(\sqrt{x}-1)$
5. $x+\sqrt{x}-2=(x-\sqrt{x})+(2\sqrt{x}-2)$
$=\sqrt{x}(\sqrt{x}-1)+2(\sqrt{x}-1)=(\sqrt{x}-1)(\sqrt{x}+2)$
6. $x-5\sqrt{x}+6=(x-2\sqrt{x})-(3\sqrt{x}-6)=\sqrt{x}(\sqrt{x}-2)-3(\sqrt{x}-2)=(\sqrt{x}-2)(\sqrt{x}-3)$
7. $x\sqrt{x}-1=(\sqrt{x})^3-1^3=(\sqrt{x}-1)(x+\sqrt{x}+1)$
8. $x\sqrt{x}-x+\sqrt{x}-1=x(\sqrt{x}-1)+(\sqrt{x}-1)=(\sqrt{x}-1)(x+1)$
9. $x+2\sqrt{x}-15=(x-3\sqrt{x})+(5\sqrt{x}-15)=\sqrt{x}(\sqrt{x}-3)+5(\sqrt{x}-3)=(\sqrt{x}-3)(\sqrt{x}+5)$
10. $x-2\sqrt{x}-3=(x+\sqrt{x})-(3\sqrt{x}+3)=\sqrt{x}(\sqrt{x}+1)-3(\sqrt{x}+1)=(\sqrt{x}+1)(\sqrt{x}-3)$
\(x+\sqrt{x}=\sqrt{x}\left(\sqrt{x}+1\right)\\ x-\sqrt{x}=\sqrt{x}\left(\sqrt{x}-1\right)\\ a+3\sqrt{a}-10=a+5\sqrt{a}-2\sqrt{a}-10=\sqrt{a}\left(\sqrt{a}+5\right)-2\left(\sqrt{a}+5\right)=\left(\sqrt{a}-2\right)\left(\sqrt{a}+5\right)\)
\(x\sqrt{x}+\sqrt{x}-x-1=\left(x\sqrt{x}-x\right)+\left(\sqrt{x}-1\right)=x\left(\sqrt{x}-1\right)+\sqrt{x}-1=\left(\sqrt{x}-1\right)\left(x+1\right)\\ x+\sqrt{x}-2=x+2\sqrt{x}-\sqrt{x}-2=\sqrt{x}\left(\sqrt{x}+2\right)-\left(\sqrt{x}+2\right)=\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)\\ x-5\sqrt{x}+6=x-2\sqrt{x}-3\sqrt{x}-6=\sqrt{x}\left(\sqrt{x}-2\right)-3\left(\sqrt{x}-2\right)=\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)\)
Mấy bạn còn lại tương tự những bài trên nhé. Nếu còn thắc mắc ở chỗ nào bạn có thể liên hệ mình nhé. Nhớ lần sau bạn tách ra nha, chứ nhiều câu quá.
giải pt :
a, \(3x^2+3x+2=\left(x+6\right)\sqrt{x^2-2x-3}\)
b, \(\sqrt{x}+\sqrt{x+1}=\sqrt{x^2+x}+1\)
c, \(\sqrt{x^2-8x+15}+\sqrt{x^2+2x-15}=\sqrt{x^2-9x+18}\)
c.
ĐKXĐ: \(\left[{}\begin{matrix}x\le-5\\x\ge6\end{matrix}\right.\)
\(\sqrt{\left(x-3\right)\left(x-5\right)}+\sqrt{\left(x-3\right)\left(x+5\right)}=\sqrt{\left(x-3\right)\left(x-6\right)}\)
- Với \(x\ge6\) , do \(x-3>0\) pt trở thành:
\(\sqrt{x-5}+\sqrt{x+5}=\sqrt{x-6}\)
Do \(\left\{{}\begin{matrix}\sqrt{x-5}>\sqrt{x-6}\\\sqrt{x+5}>0\end{matrix}\right.\) \(\Rightarrow\sqrt{x-5}+\sqrt{x+5}>\sqrt{x-6}\) pt vô nghiệm
- Với \(x\le-5\) pt tương đương:
\(\sqrt{\left(3-x\right)\left(5-x\right)}+\sqrt{\left(3-x\right)\left(-x-5\right)}=\sqrt{\left(3-x\right)\left(6-x\right)}\)
Do \(3-x>0\) pt trở thành:
\(\sqrt{5-x}+\sqrt{-x-5}=\sqrt{6-x}\)
\(\Leftrightarrow-2x+2\sqrt{x^2-25}=6-x\)
\(\Leftrightarrow2\sqrt{x^2-25}=x+6\) (\(x\ge-6\))
\(\Leftrightarrow4\left(x^2-25\right)=x^2+12x+36\)
\(\Leftrightarrow3x^2-12x-136=0\Rightarrow x=\dfrac{6-2\sqrt{111}}{3}\)
a.
Kiểm tra lại đề, pt này không giải được
b.
ĐKXĐ: \(x\ge0\)
\(\sqrt{x\left(x+1\right)}-\sqrt{x}+1-\sqrt{x+1}=0\)
\(\Leftrightarrow\sqrt{x}\left(\sqrt{x+1}-1\right)-\left(\sqrt{x+1}-1\right)=0\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)\left(\sqrt{x+1}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=1\\\sqrt{x+1}=1\end{matrix}\right.\)
\(\Leftrightarrow...\)
1. Tìm x:
a/\(\sqrt{\dfrac{x-1}{x-3}=2}\)
b/\(\sqrt{\left(x-2\right)^2=7}\)
2. Tính:
\(\dfrac{\sqrt{6}+\sqrt{10}}{3+\sqrt{15}}\)
1,\(\sqrt{x-5}+\sqrt{x+4}=3\)
2,\(\sqrt{x+4-4\sqrt{x}}+\sqrt{x+6-6\sqrt{x}}=1\)
3,\(\sqrt{x+3}-\sqrt{x-4}=1\)
4,\(\sqrt{15-x}+\sqrt{3-x}=6\)
5,\(\sqrt{10-x}+\sqrt{x+3}=5\)
6,\(\sqrt{2x-1}+\sqrt{x-2}=\sqrt{x+1}\)
7,\(\sqrt{x+6-4\sqrt{x+2}}+\sqrt{x+11-6\sqrt{x+2}}=1\)
8,\(\sqrt{x^2-5x+6}+\sqrt{x-2-3\sqrt{x-3}}=3\)
9,\(2x^2-x+4=2\sqrt{2x+3}\)
mầy câu 1;3;;4;5 cách làm nhu nhau(nhân liên hop hoac bình phuong lên)
1.
\(DK:x\in\left[-4;5\right]\)
\(\Leftrightarrow\sqrt{x-5}+\left(\sqrt{x+4}-3\right)=0\)
\(\Leftrightarrow\sqrt{x-5}+\frac{x-5}{\sqrt{x+4}+3}=0\)
\(\Leftrightarrow\sqrt{x-5}\left(1+\frac{\sqrt{x-5}}{\sqrt{x+4}+3}\right)=0\)
Vi \(1+\frac{\sqrt{x-5}}{\sqrt{x+4}+3}>0\)
\(\Rightarrow\sqrt{x-5}=0\)
\(x=5\left(n\right)\)
Vay nghiem cua PT la \(x=5\)
2.
\(DK:x\ge0\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x}-2\right)^2}+\sqrt{\left(\sqrt{x}-3\right)^2}=1\)
\(\Leftrightarrow|\sqrt{x}-2|+|\sqrt{x}-3|=1\)
Ta co:
\(|\sqrt{x}-2|+|\sqrt{x}-3|=|\sqrt{x}-2|+|3-\sqrt{x}|\ge|\sqrt{x}-2+3-\sqrt{x}|=1\)
Dau '=' xay ra khi \(\left(\sqrt{x}-2\right)\left(3-\sqrt{x}\right)\ge0\)
TH1:
\(\hept{\begin{cases}\sqrt{x}-2\ge0\\3-\sqrt{x}\ge0\end{cases}\Leftrightarrow4\le x\le9\left(n\right)}\)
TH2:(loai)
Vay nghiem cua PT la \(x\in\left[4;9\right]\)
6.
\(DK:x\ge2\)
\(\Leftrightarrow\left(\sqrt{2x-1}-\sqrt{x+1}\right)+\sqrt{x-2}=0\)
\(\Leftrightarrow\frac{x-2}{\sqrt{2x-1}+\sqrt{x+1}}+\sqrt{x-2}=0\)
\(\Leftrightarrow\sqrt{x-2}\left(\frac{\sqrt{x-2}}{\sqrt{2x-1}+\sqrt{x+1}}+1\right)=0\)
Vi \(\frac{\sqrt{x-2}}{\sqrt{2x-1}+\sqrt{x+1}}+1>0\)
\(\Rightarrow x=2\left(n\right)\)
Vay nghiem cua PT la \(x=2\)
\(\left(\dfrac{\sqrt{x}}{2\sqrt{x}-2}+\dfrac{3-\sqrt{x}}{2x-2}\right):\left(\dfrac{\sqrt{x}-1}{x+\sqrt{x}+1}+\dfrac{\sqrt{x}+2}{x\sqrt{x}-1}\right)\)
1) Rút gọn
2)Tìm x để P=3
3)Tính P tại x = 15+\(6\sqrt{6}\)
1) Ta có: \(P=\left(\dfrac{\sqrt{x}}{2\sqrt{x}-2}+\dfrac{3-\sqrt{x}}{2x-2}\right):\left(\dfrac{\sqrt{x}-1}{x+\sqrt{x}+1}+\dfrac{\sqrt{x}+2}{x\sqrt{x}-1}\right)\)
\(=\left(\dfrac{\sqrt{x}}{2\left(\sqrt{x}-1\right)}+\dfrac{3-\sqrt{x}}{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\left(\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\dfrac{\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right)\)
\(=\left(\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\dfrac{3-\sqrt{x}}{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\left(\dfrac{x-2\sqrt{x}+1+\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right)\)
\(=\dfrac{x+\sqrt{x}+3-\sqrt{x}}{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\dfrac{x-\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(=\dfrac{x+3}{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x-\sqrt{x}+3}\)
\(=\dfrac{\left(x+3\right)\left(x+\sqrt{x}+1\right)}{2\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+3\right)}\)
giaỉ pt:
a, \(\sqrt{x +1}+2\left(x+1\right)=x-1+\sqrt{1-x}+3\sqrt{1-x^2}\)
b, \(14\sqrt{x+35}+6\sqrt{x+1}=84+\sqrt{x^2+36x+35}\)
c, \(x\sqrt{2x+3}+3\left(\sqrt{x+5}+1\right)=3x+\sqrt{2x^2+13x+15}+\sqrt{2x+3}\)
b.
ĐKXĐ: \(x\ge-1\)
\(\sqrt{\left(x+1\right)\left(x+35\right)}-14\sqrt{x+35}+84-6\sqrt{x+1}=0\)
\(\Leftrightarrow\sqrt{x+1}\left(\sqrt{x+35}-14\right)-6\left(\sqrt{x+35}-14\right)=0\)
\(\Leftrightarrow\left(\sqrt{x+1}-6\right)\left(\sqrt{x+35}-14\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+1}=6\\\sqrt{x+35}=14\end{matrix}\right.\)
\(\Leftrightarrow...\)
a. ĐKXĐ: \(-1\le x\le1\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x+1}=a\ge0\\\sqrt{1-x}=b\ge0\end{matrix}\right.\)
\(\Rightarrow a+2a^2=-b^2+b+3ab\)
\(\Leftrightarrow\left(2a^2-3ab+b^2\right)+a-b=0\)
\(\Leftrightarrow\left(a-b\right)\left(2a-b\right)+a-b=0\)
\(\Leftrightarrow\left(a-b\right)\left(2a-b+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=b\\2a+1=b\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+1}=\sqrt{1-x}\\2\sqrt{x+1}+1=\sqrt{1-x}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\4x+5+4\sqrt{x+1}=1-x\left(1\right)\end{matrix}\right.\)
(1) \(\Leftrightarrow4\sqrt{x+1}=-4-5x\) \(\left(x\le-\dfrac{4}{5}\right)\)
\(\Leftrightarrow16\left(x+1\right)=25x^2+40x+16\)
\(\Leftrightarrow25x^2+24x=0\Rightarrow\left[{}\begin{matrix}x=0\left(loại\right)\\x=-\dfrac{24}{25}\end{matrix}\right.\)
c.
ĐKXĐ: \(x\ge-\dfrac{3}{2}\)
\(\Leftrightarrow x\sqrt{2x+3}-\sqrt{2x+3}+3-3x+3\sqrt{x+5}-\sqrt{\left(2x+3\right)\left(x+5\right)}=0\)
\(\Leftrightarrow\sqrt{2x+3}\left(x-1\right)-3\left(x-1\right)-\sqrt{x+5}\left(\sqrt{2x+3}-3\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(\sqrt{2x+3}-3\right)-\sqrt{x+5}\left(\sqrt{2x+3}-3\right)=0\)
\(\Leftrightarrow\left(x-1-\sqrt{x+5}\right)\left(\sqrt{2x+3}-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1-\sqrt{x+5}=0\\\sqrt{2x+3}-3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x+5-\sqrt{x+5}-6=0\\\sqrt{2x+3}=3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+5}=-2\left(loại\right)\\\sqrt{x+5}=3\\\sqrt{2x+3}=3\end{matrix}\right.\)
\(\Leftrightarrow...\)
Tìm x biết:
\(\sqrt{4x+20}-3\sqrt{5+x}+\dfrac{4}{3}\sqrt{9x+15}=6\)
ĐKXĐ:\(x\ge-5\)
`sqrt{4x+20}-3sqrt{5+x}+4/3sqrt{9x+15}=6(x>=-5)`
`<=>sqrt{4(x+5)}-3sqrt{x+5}+4/3sqrt{9(x+5)}=6`
`<=>2sqrt{x+5}-3sqrt{x+5}+4sqrt{x+5}=6`
`<=>3sqrt{x+5}=6`
`<=>sqrt{x+5}=2`
`<=>x+5=4`
`<=>x=-1(tm)`
Vậy `x=-1`
Ta có: \(\sqrt{4x+20}-3\sqrt{x+5}+\dfrac{4}{3}\cdot\sqrt{9x+45}=6\)
\(\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+\dfrac{4}{3}\cdot3\sqrt{x+5}=6\)
\(\Leftrightarrow0\cdot\sqrt{x+5}=6\left(vôlý\right)\)
\(\sqrt{x^2+8x+15}=3\sqrt{x+3}+2\sqrt{x+5}-6\)
ĐKXĐ : \(\hept{\begin{cases}x+3\ge0\\x+5\ge0\end{cases}\Leftrightarrow x\ge-3}\)
Đặt \(\hept{\begin{cases}\sqrt{x+3}=a\\\sqrt{x+5}=b\end{cases}\left(a;b\ge0\right)}\)
\(\Rightarrow\sqrt{x^2+8x+15}=ab\)
Pt có dạng ::
ab = 3a + 2b - 6
<=> 3a - ab + 2b - 6 = 0
<=> a( 3 - b ) + 2 ( b - 3 ) = 0
<=> ( a - 2 ) ( 3 - b ) = 0
Đến đây tự giải tiếp nha ! Muộn rồi ngủ ngon ... BYe !